From Tooth Adhesion to Bioadhesion: Development of Bioabsorbable Putty-like Artificial Bone with Adhesive to Bone Based on the New Material “Phosphorylated Pullulan”
Ko Nakanishi, Tsukasa Akasaka, Hiroshi Hayashi, K. Yoshihara, Teppei Nakamura, Mariko Nakamura, B. Meerbeek, Yasuhiro Yoshida
{"title":"From Tooth Adhesion to Bioadhesion: Development of Bioabsorbable Putty-like Artificial Bone with Adhesive to Bone Based on the New Material “Phosphorylated Pullulan”","authors":"Ko Nakanishi, Tsukasa Akasaka, Hiroshi Hayashi, K. Yoshihara, Teppei Nakamura, Mariko Nakamura, B. Meerbeek, Yasuhiro Yoshida","doi":"10.3390/ma17153671","DOIUrl":null,"url":null,"abstract":"Bioabsorbable materials have a wide range of applications, such as scaffolds for regenerative medicine and cell transplantation therapy and carriers for drug delivery systems. Therefore, although many researchers are conducting their research and development, few of them have been used in clinical practice. In addition, existing bioabsorbable materials cannot bind to the body’s tissues. If bioabsorbable materials with an adhesive ability to biological tissues can be made, they can ensure the mixture remains fixed to the affected area when mixed with artificial bone or other materials. In addition, if the filling material in the bone defect is soft and uncured, resorption is rapid, which is advantageous for bone regeneration. In this paper, the development and process of a new bioabsorbable material “Phosphorylated pullulan” and its capability as a bone replacement material were demonstrated. Phosphorylated pullulan, which was developed based on the tooth adhesion theory, is the only bioabsorbable material able to adhere to bone and teeth. The phosphorylated pullulan and β-TCP mixture is a non-hardening putty. It is useful as a new resorbable bone replacement material with an adhesive ability for bone defects around implants.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"45 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ma17153671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bioabsorbable materials have a wide range of applications, such as scaffolds for regenerative medicine and cell transplantation therapy and carriers for drug delivery systems. Therefore, although many researchers are conducting their research and development, few of them have been used in clinical practice. In addition, existing bioabsorbable materials cannot bind to the body’s tissues. If bioabsorbable materials with an adhesive ability to biological tissues can be made, they can ensure the mixture remains fixed to the affected area when mixed with artificial bone or other materials. In addition, if the filling material in the bone defect is soft and uncured, resorption is rapid, which is advantageous for bone regeneration. In this paper, the development and process of a new bioabsorbable material “Phosphorylated pullulan” and its capability as a bone replacement material were demonstrated. Phosphorylated pullulan, which was developed based on the tooth adhesion theory, is the only bioabsorbable material able to adhere to bone and teeth. The phosphorylated pullulan and β-TCP mixture is a non-hardening putty. It is useful as a new resorbable bone replacement material with an adhesive ability for bone defects around implants.