V. Ferraro, Fabian Hoffmann, Olaf Fuhr, Burkhard Luy, Stefan Bräse
{"title":"2,1,3-Benzoselenadiazole as Mono- and Bidentate N-Donor for Heteroleptic Cu(I) Complexes: Synthesis, Characterization and Photophysical Properties","authors":"V. Ferraro, Fabian Hoffmann, Olaf Fuhr, Burkhard Luy, Stefan Bräse","doi":"10.3390/inorganics12080201","DOIUrl":null,"url":null,"abstract":"Mono- and binuclear Cu(I) complexes were isolated employing 2,1,3-benzoselenadiazole (BSeD) as the N-donor ligand, and triphenylphosphine or bis[(2-diphenylphosphino)phenyl] ether (DPEphos) as P-donors. Then, 77Se NMR was measured for the free ligand and the corresponding Cu(I) derivatives, and the related signal was downshifted by 12.86 ppm in the case of [Cu(BSeD)(PPh3)2(ClO4)], and around 15 ppm for the binuclear species. The structure of [Cu(BSeD)(PPh3)2(ClO4)] and [Cu2(μ2-BSeD)(DPEphos)2(ClO4)2] was confirmed by single-crystal X-ray diffraction. The geometry of the Cu(I) complexes was optimized through DFT calculations, and the nature of the Cu···O interaction was investigated through AIM analysis. The three Cu(I) complexes were characterized by intense absorption under 400 nm and, after being excited with blue irradiation, [Cu(BSeD)(PPh3)2(ClO4)] and [Cu2(μ2-BSeD)(PPh3)4(ClO4)2] exhibited weak red emissions centered at 700 nm. The lifetimes comprised between 121 and 159 μs support the involvement of triplet excited states in the emission process. The photoluminescent properties of [Cu(BSeD)(PPh3)2(ClO4)] were supported by TDDFT computations, and the emission was predicted at 710 nm and ascribed to a metal-to-ligand charge transfer (3MLCT) process, in agreement with the experimental data.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12080201","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Mono- and binuclear Cu(I) complexes were isolated employing 2,1,3-benzoselenadiazole (BSeD) as the N-donor ligand, and triphenylphosphine or bis[(2-diphenylphosphino)phenyl] ether (DPEphos) as P-donors. Then, 77Se NMR was measured for the free ligand and the corresponding Cu(I) derivatives, and the related signal was downshifted by 12.86 ppm in the case of [Cu(BSeD)(PPh3)2(ClO4)], and around 15 ppm for the binuclear species. The structure of [Cu(BSeD)(PPh3)2(ClO4)] and [Cu2(μ2-BSeD)(DPEphos)2(ClO4)2] was confirmed by single-crystal X-ray diffraction. The geometry of the Cu(I) complexes was optimized through DFT calculations, and the nature of the Cu···O interaction was investigated through AIM analysis. The three Cu(I) complexes were characterized by intense absorption under 400 nm and, after being excited with blue irradiation, [Cu(BSeD)(PPh3)2(ClO4)] and [Cu2(μ2-BSeD)(PPh3)4(ClO4)2] exhibited weak red emissions centered at 700 nm. The lifetimes comprised between 121 and 159 μs support the involvement of triplet excited states in the emission process. The photoluminescent properties of [Cu(BSeD)(PPh3)2(ClO4)] were supported by TDDFT computations, and the emission was predicted at 710 nm and ascribed to a metal-to-ligand charge transfer (3MLCT) process, in agreement with the experimental data.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD