Price Trend Forecasting in the Brazilian Stock Market using Discrete-Time Markov Chain

João Queiroz, Martha Torres
{"title":"Price Trend Forecasting in the Brazilian Stock Market using Discrete-Time Markov Chain","authors":"João Queiroz, Martha Torres","doi":"10.14295/vetor.v34i1.16774","DOIUrl":null,"url":null,"abstract":"O entendimento da tendência do mercado de ações com o objetivo de prever o movimento de preço é muito importante para decisões de investimento dado que os preços das ações são afetados não somente pelo estado financeiro da empresa, mas também por condições políticas, sociais, econômicas, globais e locais, além de muitos outros fatores. As Cadeias de Markov proporcionam um ferramental poderoso para realizar modelagem matemática e computacional e têm sido também usadas para prever tendências no mercado de ações. A partir disto, o seguinte trabalho traz uma ferramenta computacional modelada com base nos conhecimentos obtidos através dos estudos sobre Cadeias de Markov de tempo discreto capaz de realizar previsões de tendências de preço de ações da bolsa de valores brasileira utilizando o método de 3 estados. Foram realizadas análises em 50 ações da BOVESPA a fim de observar se o percentual de sucesso das previsões tem alguma relação com o tamanho do período para construção da matriz de transição. Estes testes foram realizados para os anos de 2019, 2020 e 2021 com o objetivo de observar se houve impactos na efetividade dos métodos durante o período de pandemia de COVID-19.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"59 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v34i1.16774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O entendimento da tendência do mercado de ações com o objetivo de prever o movimento de preço é muito importante para decisões de investimento dado que os preços das ações são afetados não somente pelo estado financeiro da empresa, mas também por condições políticas, sociais, econômicas, globais e locais, além de muitos outros fatores. As Cadeias de Markov proporcionam um ferramental poderoso para realizar modelagem matemática e computacional e têm sido também usadas para prever tendências no mercado de ações. A partir disto, o seguinte trabalho traz uma ferramenta computacional modelada com base nos conhecimentos obtidos através dos estudos sobre Cadeias de Markov de tempo discreto capaz de realizar previsões de tendências de preço de ações da bolsa de valores brasileira utilizando o método de 3 estados. Foram realizadas análises em 50 ações da BOVESPA a fim de observar se o percentual de sucesso das previsões tem alguma relação com o tamanho do período para construção da matriz de transição. Estes testes foram realizados para os anos de 2019, 2020 e 2021 com o objetivo de observar se houve impactos na efetividade dos métodos durante o período de pandemia de COVID-19.
利用离散时间马尔可夫链预测巴西股票市场的价格趋势
了解股市趋势以预测价格走势对投资决策非常重要,因为股票价格不仅受公司财务状况的影响,还受政治、社会、经济、全球和当地条件以及许多其他因素的影响。马尔可夫链为数学建模和计算建模提供了强大的工具,也被用于预测股市趋势。在此基础上,以下论文介绍了一种计算工具,该工具以离散时间马尔可夫链研究中获得的知识为模型,能够使用三态法预测巴西证券交易所的股票价格趋势。本文对巴西证券交易所的 50 只股票进行了分析,以了解成功预测的百分比是否与用于构建过渡矩阵的周期长度有关。对 2019 年、2020 年和 2021 年进行了这些测试,以了解在 COVID-19 大流行期间这些方法的有效性是否受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信