Deep reinforcement learning-aided minimum current control for the DBSRC based on harmonic analysis method

Ziqiao Yu, Zhengcheng Li
{"title":"Deep reinforcement learning-aided minimum current control for the DBSRC based on harmonic analysis method","authors":"Ziqiao Yu, Zhengcheng Li","doi":"10.54254/2755-2721/67/2024ma0069","DOIUrl":null,"url":null,"abstract":"Aiming to optimize the modulation efficiency for the dual-bridge series-resonant converter (DBSRC), this paper proposes an deep reinforcement learning (DRL) aided EPS (DEPS) modulation scheme for minimum current operation based on the harmonic analysis method. Using the deep deterministic policy gradient (DDPG) algorithm as an advanced DRL algorithm, the scheme obtains the optimized modulation scheme DEPS through offline training of the agent, which can adopt the extended-phase-shift (EPS) modulation scheme and consider the zero-voltage-switching (ZVS) constraints. Thus, the trained agent of the DDPG which likes an implicit function, can provide optimal phase shift angle for the DBSRC in real-time with the minimum current and soft switching performance in the continuous operation range. Compared with the existing EPS modulation schemes using First Harmonic Approximation (FHA), the DEPS modulation scheme has similar operational efficiency and performance of the converter, while also possessing the ability to obtain modulation angles in real-time based on environmental parameters. Finally, PSIM simulation verifies the effectiveness of the proposed optimization scheme.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"6 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/67/2024ma0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming to optimize the modulation efficiency for the dual-bridge series-resonant converter (DBSRC), this paper proposes an deep reinforcement learning (DRL) aided EPS (DEPS) modulation scheme for minimum current operation based on the harmonic analysis method. Using the deep deterministic policy gradient (DDPG) algorithm as an advanced DRL algorithm, the scheme obtains the optimized modulation scheme DEPS through offline training of the agent, which can adopt the extended-phase-shift (EPS) modulation scheme and consider the zero-voltage-switching (ZVS) constraints. Thus, the trained agent of the DDPG which likes an implicit function, can provide optimal phase shift angle for the DBSRC in real-time with the minimum current and soft switching performance in the continuous operation range. Compared with the existing EPS modulation schemes using First Harmonic Approximation (FHA), the DEPS modulation scheme has similar operational efficiency and performance of the converter, while also possessing the ability to obtain modulation angles in real-time based on environmental parameters. Finally, PSIM simulation verifies the effectiveness of the proposed optimization scheme.
基于谐波分析方法的深度强化学习辅助 DBSRC 最小电流控制
为了优化双桥串联谐振变换器(DBSRC)的调制效率,本文提出了一种基于谐波分析方法的深度强化学习(DRL)辅助 EPS(DEPS)调制方案,用于最小电流运行。该方案将深度确定性策略梯度(DDPG)算法作为一种先进的 DRL 算法,通过离线训练代理获得优化的调制方案 DEPS,该方案可采用扩展相移(EPS)调制方案,并考虑零电压开关(ZVS)约束。因此,经过训练的 DDPG 代理(喜欢隐式函数)可以实时为 DBSRC 提供最佳相移角,并在连续工作范围内实现最小电流和软开关性能。与现有的使用一次谐波逼近法(FHA)的 EPS 调制方案相比,DEPS 调制方案具有相似的转换器运行效率和性能,同时还能根据环境参数实时获得调制角。最后,PSIM 仿真验证了所提优化方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信