Research on Quality Control Method of Surface Temperature Observations for Complex Physical Geography

Xiong Xiong, Zhongbao Jiang, Hongsheng Tang, An Ran, Liu Yuzhu, X. Ye
{"title":"Research on Quality Control Method of Surface Temperature Observations for Complex Physical Geography","authors":"Xiong Xiong, Zhongbao Jiang, Hongsheng Tang, An Ran, Liu Yuzhu, X. Ye","doi":"10.1175/jtech-d-22-0148.1","DOIUrl":null,"url":null,"abstract":"\nThis article aims to improve the quality control (QC) of surface daily temperature observations over complex physical geography. A new QC method based on multi-verse optimization algorithm, variational modal decomposition and kernel extreme learning machine was employed to identify potential outliers (the MVO-VMD-KELM method). For the selected six regions with complex physical geography, the inverse distance weighting (IDW), the spatial regression test (SRT), the kernel extreme learning machine (KELM), and the empirical mode decomposition improved KELM (EMD-KELM) methods were employed to test the proposed method. The results indicate that the MVO-VMD-KELM method outperformed other methods in all the cases. The MVO-VMD-KELM method yielded better mean absolute error (MAE), root mean square error (RMSE), index of agreement (IOA) and Nash-Sutcliffe model efficiency coefficient (NSC) values than others via the analysis of evaluation metrics for different cases. The comparison results led to the recommendation that the proposed method is an effective quality control method in identifying the seeded errors for the surface daily temperature observations.","PeriodicalId":507668,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0148.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to improve the quality control (QC) of surface daily temperature observations over complex physical geography. A new QC method based on multi-verse optimization algorithm, variational modal decomposition and kernel extreme learning machine was employed to identify potential outliers (the MVO-VMD-KELM method). For the selected six regions with complex physical geography, the inverse distance weighting (IDW), the spatial regression test (SRT), the kernel extreme learning machine (KELM), and the empirical mode decomposition improved KELM (EMD-KELM) methods were employed to test the proposed method. The results indicate that the MVO-VMD-KELM method outperformed other methods in all the cases. The MVO-VMD-KELM method yielded better mean absolute error (MAE), root mean square error (RMSE), index of agreement (IOA) and Nash-Sutcliffe model efficiency coefficient (NSC) values than others via the analysis of evaluation metrics for different cases. The comparison results led to the recommendation that the proposed method is an effective quality control method in identifying the seeded errors for the surface daily temperature observations.
复杂自然地理地表温度观测质量控制方法研究
本文旨在改进复杂自然地理条件下地表日温度观测的质量控制(QC)。文章采用了一种基于多逆向优化算法、变异模态分解和核极端学习机的新质量控制方法(MVO-VMD-KELM 方法)来识别潜在的异常值。针对所选的六个自然地理条件复杂的地区,采用了反距离加权法(IDW)、空间回归检验法(SRT)、核极端学习机法(KELM)和经验模态分解改进 KELM 法(EMD-KELM)来检验所提出的方法。结果表明,MVO-VMD-KELM 方法在所有情况下都优于其他方法。通过分析不同情况下的评价指标,MVO-VMD-KELM 方法的平均绝对误差 (MAE)、均方根误差 (RMSE)、一致指数 (IOA) 和 Nash-Sutcliffe 模型效率系数 (NSC) 值均优于其他方法。比较结果表明,建议的方法是识别地表日温度观测种子误差的有效质量控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信