{"title":"Novel Benzimidazole based Hydrazide-hydrazone Compounds: Synthesis, Characterization and Antimicrobial Assessment","authors":"V. A. Doshi, Yogesh S. Patel","doi":"10.14233/ajchem.2024.31484","DOIUrl":null,"url":null,"abstract":"This work presents a comprehensive study on the design, synthesis, spectral characterization and antimicrobial assessment of new hydrazide-hydrazone incorporated benzimidazole compounds (6a-p). The synthesis of these compounds (6a-p) involved the condensation of benzimidazole derivative, 4-(1-methyl-5-nitro-1H-benzo[d]imidazol-2-yl)butane hydrazide with substituted aromatic aldehydes, utilizing an efficient and environmentally benign synthetic route. The IR, NMR and mass spectrometry were among the spectroscopic methods used to characterize the novel synthesized substances to confirm their chemical structures. The antimicrobial properties of the synthesized benzimidazole-based hydrazide-hydrazone compounds (6a-p) were systematically assessed against a panel of pathogenic microorganisms, including two Gram-positive and two Gram-negative bacteria and three fungi. The potency of antimicrobial drugs was assessed by determining their minimum inhibitory concentrations (MIC). The findings demonstrate that compounds 6k and 6p have moderated antibacterial action against positive-Gram bacteria S. pyogenus (MTCC 442) and S. aureus (MTCC 96), but considerable antimicrobial activity against Gram-negative bacteria E. coli (MTCC 443) and P. aeruginosa (MTCC 1688). Although every drug exhibits mild to moderate antifungal efficacy against A. niger (MTCC 282), A. clavatus (MTCC 1323) and C. albicans (MTCC 227). Furthermore, in silico prediction of compounds pharmacokinetic properties was also conducted.","PeriodicalId":8494,"journal":{"name":"Asian Journal of Chemistry","volume":"19 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajchem.2024.31484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a comprehensive study on the design, synthesis, spectral characterization and antimicrobial assessment of new hydrazide-hydrazone incorporated benzimidazole compounds (6a-p). The synthesis of these compounds (6a-p) involved the condensation of benzimidazole derivative, 4-(1-methyl-5-nitro-1H-benzo[d]imidazol-2-yl)butane hydrazide with substituted aromatic aldehydes, utilizing an efficient and environmentally benign synthetic route. The IR, NMR and mass spectrometry were among the spectroscopic methods used to characterize the novel synthesized substances to confirm their chemical structures. The antimicrobial properties of the synthesized benzimidazole-based hydrazide-hydrazone compounds (6a-p) were systematically assessed against a panel of pathogenic microorganisms, including two Gram-positive and two Gram-negative bacteria and three fungi. The potency of antimicrobial drugs was assessed by determining their minimum inhibitory concentrations (MIC). The findings demonstrate that compounds 6k and 6p have moderated antibacterial action against positive-Gram bacteria S. pyogenus (MTCC 442) and S. aureus (MTCC 96), but considerable antimicrobial activity against Gram-negative bacteria E. coli (MTCC 443) and P. aeruginosa (MTCC 1688). Although every drug exhibits mild to moderate antifungal efficacy against A. niger (MTCC 282), A. clavatus (MTCC 1323) and C. albicans (MTCC 227). Furthermore, in silico prediction of compounds pharmacokinetic properties was also conducted.