Mohammed Humayun Rashid Choudhury, Md Nizam Uddin, Partha Partim Nath, I. A. Siddiquey, Mohammad Razaul Karim, Md. Azharul Arafath, C. Ramana, Mohammed Muzibur Rahman
{"title":"Copper and Nitrogen co-doped ZnO Nanomaterials with Enhanced Photocatalytic and Antibacterial Activities","authors":"Mohammed Humayun Rashid Choudhury, Md Nizam Uddin, Partha Partim Nath, I. A. Siddiquey, Mohammad Razaul Karim, Md. Azharul Arafath, C. Ramana, Mohammed Muzibur Rahman","doi":"10.14233/ajchem.2024.31921","DOIUrl":null,"url":null,"abstract":"This work demonstrates the enhanced photocatalytic and antibacterial activities of copper and nitrogen-co-doped ZnO (Cu-N-ZnO) nanomaterials deposited onto soda-lime glass using a low-cost chemical approach. The effect of combined Cu-N doping is significant on the structure, properties, and performance of ZnO, as revealed from the characterization results. The synthesized materials crystallize in a hexagonal wurtzite structure of ZnO with a high degree of crystallinity, according to X-ray diffraction (XRD) experiments. The scanning electron microscopy (SEM) analysis indicated a uniformly distributed morphology with spherical-like ZnO nanoparticles. The optical studies revealed that the band gap decreases significantly in 5% Cu-5% N co-doped ZnO (2.89 eV) compared to intrinsic ZnO (3.36 eV). The photocatalytic and antibacterial activities of the samples were evaluated by the degradation of methylene blue dye in aqueous media and the inactivation of E. coli bacteria under visible light irradiation. The 5% Cu-5% N doped ZnO showed the highest dye degradation efficiency, which was 64.44% higher than that of the intrinsic ZnO and inactivated 62.53% more bacteria in the presence of light compared to that in a dark condition. Moreover, Cu-N co-doped ZnO inactivated 79.06% and 23.22% more bacteria than bare glass slides and ZnO under visible light irradiation, respectively.","PeriodicalId":8494,"journal":{"name":"Asian Journal of Chemistry","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajchem.2024.31921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrates the enhanced photocatalytic and antibacterial activities of copper and nitrogen-co-doped ZnO (Cu-N-ZnO) nanomaterials deposited onto soda-lime glass using a low-cost chemical approach. The effect of combined Cu-N doping is significant on the structure, properties, and performance of ZnO, as revealed from the characterization results. The synthesized materials crystallize in a hexagonal wurtzite structure of ZnO with a high degree of crystallinity, according to X-ray diffraction (XRD) experiments. The scanning electron microscopy (SEM) analysis indicated a uniformly distributed morphology with spherical-like ZnO nanoparticles. The optical studies revealed that the band gap decreases significantly in 5% Cu-5% N co-doped ZnO (2.89 eV) compared to intrinsic ZnO (3.36 eV). The photocatalytic and antibacterial activities of the samples were evaluated by the degradation of methylene blue dye in aqueous media and the inactivation of E. coli bacteria under visible light irradiation. The 5% Cu-5% N doped ZnO showed the highest dye degradation efficiency, which was 64.44% higher than that of the intrinsic ZnO and inactivated 62.53% more bacteria in the presence of light compared to that in a dark condition. Moreover, Cu-N co-doped ZnO inactivated 79.06% and 23.22% more bacteria than bare glass slides and ZnO under visible light irradiation, respectively.