Performance analysis of k-Nearest Neighbors classification on Reuters news article datasets

Qian Yang
{"title":"Performance analysis of k-Nearest Neighbors classification on Reuters news article datasets","authors":"Qian Yang","doi":"10.54254/2755-2721/55/20241444","DOIUrl":null,"url":null,"abstract":"The k-Nearest Neighbors (k-NN) algorithm is a fundamental and widely-used classification technique that has found applications in various domains, including text classification. In this paper, we present a comprehensive analysis of the k-NN classification algorithm applied to the Reuters news article dataset. Our study includes the data, implementation k-NN classification with different parameters, performance evaluation, and statistical analysis to draw meaningful conclusions. In a comprehensive analysis of the k-NN classification algorithm used for the Reuters news article data-set. A variety of metrics is used to evaluate the performance of the k-NN algorithm, such as accuracy, precision, recall, and F1 scores. These metrics provide a comprehensive view of how well the algorithm classifies news articles. Our statistical analysis reveals significant performance differences between various k-NN configurations. This can help researchers and practitioners make informed decisions when choosing the best parameters for their specific text classification tasks. In conclusion, our study provides valuable insights into the application of k-NN classification algorithms to textual data, highlighting the importance of parameter tuning and rigorous evaluation. These findings can guide practitioners to effectively use k-NN for text classification tasks and inspire further research in the field.","PeriodicalId":502253,"journal":{"name":"Applied and Computational Engineering","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/55/20241444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The k-Nearest Neighbors (k-NN) algorithm is a fundamental and widely-used classification technique that has found applications in various domains, including text classification. In this paper, we present a comprehensive analysis of the k-NN classification algorithm applied to the Reuters news article dataset. Our study includes the data, implementation k-NN classification with different parameters, performance evaluation, and statistical analysis to draw meaningful conclusions. In a comprehensive analysis of the k-NN classification algorithm used for the Reuters news article data-set. A variety of metrics is used to evaluate the performance of the k-NN algorithm, such as accuracy, precision, recall, and F1 scores. These metrics provide a comprehensive view of how well the algorithm classifies news articles. Our statistical analysis reveals significant performance differences between various k-NN configurations. This can help researchers and practitioners make informed decisions when choosing the best parameters for their specific text classification tasks. In conclusion, our study provides valuable insights into the application of k-NN classification algorithms to textual data, highlighting the importance of parameter tuning and rigorous evaluation. These findings can guide practitioners to effectively use k-NN for text classification tasks and inspire further research in the field.
路透社新闻文章数据集的 k 近邻分类性能分析
k-Nearest Neighbors(k-NN)算法是一种基本的、广泛使用的分类技术,在包括文本分类在内的各个领域都有应用。在本文中,我们对路透社新闻文章数据集的 k-NN 分类算法进行了全面分析。我们的研究包括数据、使用不同参数实施 k-NN 分类、性能评估和统计分析,从而得出有意义的结论。在对路透社新闻文章数据集使用的 k-NN 分类算法进行的全面分析中。使用了多种指标来评估 k-NN 算法的性能,如准确率、精确度、召回率和 F1 分数。这些指标全面反映了算法对新闻文章的分类效果。我们的统计分析揭示了各种 k-NN 配置之间的显著性能差异。这有助于研究人员和从业人员在为特定文本分类任务选择最佳参数时做出明智的决定。总之,我们的研究为 k-NN 分类算法在文本数据中的应用提供了宝贵的见解,强调了参数调整和严格评估的重要性。这些发现可以指导从业人员在文本分类任务中有效地使用 k-NN,并激发该领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信