{"title":"A Novel Deep Learning Framework for Intrusion Detection Systems in Wireless Network","authors":"Khoa Dinh Nguyen Dang, P. Fazio, Miroslav Voznák","doi":"10.3390/fi16080264","DOIUrl":null,"url":null,"abstract":"In modern network security setups, Intrusion Detection Systems (IDS) are crucial elements that play a key role in protecting against unauthorized access, malicious actions, and policy breaches. Despite significant progress in IDS technology, two of the most major obstacles remain: how to avoid false alarms due to imbalanced data and accurately forecast the precise type of attacks before they even happen to minimize the damage caused. To deal with two problems in the most optimized way possible, we propose a two-task regression and classification strategy called Hybrid Regression–Classification (HRC), a deep learning-based strategy for developing an intrusion detection system (IDS) that can minimize the false alarm rate and detect and predict potential cyber-attacks before they occur to help the current wireless network in dealing with the attacks more efficiently and precisely. The experimental results show that our HRC strategy accurately predicts the incoming behavior of the IP data traffic in two different datasets. This can help the IDS to detect potential attacks sooner with high accuracy so that they can have enough reaction time to deal with the attack. Furthermore, our proposed strategy can also deal with imbalanced data. Even when the imbalance is large between categories. This will help significantly reduce the false alarm rate of IDS in practice. These strengths combined will benefit the IDS by making it more active in defense and help deal with the intrusion detection problem more effectively.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16080264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In modern network security setups, Intrusion Detection Systems (IDS) are crucial elements that play a key role in protecting against unauthorized access, malicious actions, and policy breaches. Despite significant progress in IDS technology, two of the most major obstacles remain: how to avoid false alarms due to imbalanced data and accurately forecast the precise type of attacks before they even happen to minimize the damage caused. To deal with two problems in the most optimized way possible, we propose a two-task regression and classification strategy called Hybrid Regression–Classification (HRC), a deep learning-based strategy for developing an intrusion detection system (IDS) that can minimize the false alarm rate and detect and predict potential cyber-attacks before they occur to help the current wireless network in dealing with the attacks more efficiently and precisely. The experimental results show that our HRC strategy accurately predicts the incoming behavior of the IP data traffic in two different datasets. This can help the IDS to detect potential attacks sooner with high accuracy so that they can have enough reaction time to deal with the attack. Furthermore, our proposed strategy can also deal with imbalanced data. Even when the imbalance is large between categories. This will help significantly reduce the false alarm rate of IDS in practice. These strengths combined will benefit the IDS by making it more active in defense and help deal with the intrusion detection problem more effectively.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.