Multiscale ECA network: a rotation mechanical domain adaptation method with minimal class confusion

Xueyi Li, Tianyu Yu, Kaiyu Su, Peng Yuan, Zhijie Xie
{"title":"Multiscale ECA network: a rotation mechanical domain adaptation method with minimal class confusion","authors":"Xueyi Li, Tianyu Yu, Kaiyu Su, Peng Yuan, Zhijie Xie","doi":"10.1177/14759217241261155","DOIUrl":null,"url":null,"abstract":"Unsupervised rotation mechanical fault diagnosis methods have become popular, but existing unsupervised methods still have some issues. For example, it is challenging to capture vibration signal features at different scales and to address partial class confusion. To improve the diagnostic performance, this study introduces a multiscale, efficient channel attention (ECA) attention mechanism, joint adaptation network (JAN), and minimum class confusion (MCC) for addressing the aforementioned issues. First, the authors design a multiscale fault feature extraction module to capture discriminative information at different scales in vibration signals. Second, the authors introduce the ECA mechanism to weight the extracted features at the channel level, enhancing useful features and suppressing redundant features. Then, the authors employ the JAN method to establish local maximum mean discrepancy, enabling adaptation between corresponding subdomains of the source and target domains, avoiding the problem of being too close. Finally, the authors use MCC as the loss function to reduce prediction confusion between correct and ambiguous categories in target samples, thus improving transfer performance. Experimental results demonstrate that the proposed method exhibits excellent performance in unsupervised rotation mechanical fault diagnosis tasks.","PeriodicalId":515545,"journal":{"name":"Structural Health Monitoring","volume":"73 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217241261155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised rotation mechanical fault diagnosis methods have become popular, but existing unsupervised methods still have some issues. For example, it is challenging to capture vibration signal features at different scales and to address partial class confusion. To improve the diagnostic performance, this study introduces a multiscale, efficient channel attention (ECA) attention mechanism, joint adaptation network (JAN), and minimum class confusion (MCC) for addressing the aforementioned issues. First, the authors design a multiscale fault feature extraction module to capture discriminative information at different scales in vibration signals. Second, the authors introduce the ECA mechanism to weight the extracted features at the channel level, enhancing useful features and suppressing redundant features. Then, the authors employ the JAN method to establish local maximum mean discrepancy, enabling adaptation between corresponding subdomains of the source and target domains, avoiding the problem of being too close. Finally, the authors use MCC as the loss function to reduce prediction confusion between correct and ambiguous categories in target samples, thus improving transfer performance. Experimental results demonstrate that the proposed method exhibits excellent performance in unsupervised rotation mechanical fault diagnosis tasks.
多尺度 ECA 网络:具有最小类混淆的旋转机械域适应方法
无监督旋转机械故障诊断方法已变得十分流行,但现有的无监督方法仍存在一些问题。例如,捕捉不同尺度的振动信号特征和解决部分类混淆问题就很有挑战性。为了提高诊断性能,本研究引入了多尺度、高效通道关注(ECA)关注机制、联合适应网络(JAN)和最小类混淆(MCC)来解决上述问题。首先,作者设计了多尺度故障特征提取模块,以捕捉振动信号中不同尺度的判别信息。其次,作者引入 ECA 机制,对提取的特征进行信道级加权,增强有用特征,抑制冗余特征。然后,作者采用 JAN 方法建立局部最大均值差异,实现源域和目标域相应子域之间的适应,避免过于接近的问题。最后,作者使用 MCC 作为损失函数,以减少目标样本中正确类别和模糊类别之间的预测混淆,从而提高转移性能。实验结果表明,所提出的方法在无监督旋转机械故障诊断任务中表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信