Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update

Q4 Chemistry
Ravi Akash, A. S. Nesaraj
{"title":"Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update","authors":"Ravi Akash, A. S. Nesaraj","doi":"10.14233/ajchem.2024.31836","DOIUrl":null,"url":null,"abstract":"Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.","PeriodicalId":8494,"journal":{"name":"Asian Journal of Chemistry","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajchem.2024.31836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdate-based nanocrystalline materials have been considered as promising candidates in various energy and environmental remediation applications owing to their distinct characteristics and versatile functionalities. This article furnishes a comprehensive overview of recent advancements that have been made in synthesis techniques, characterization and applications of molybdate-based nanocrystalline materials in the realm of energy transformation and ecological restoration technologies. Molybdate-based nanomaterials may be classified as sulfides, phosphates and mixed-metal compounds which can be synthesized effectively by wet chemical method. The mechanisms underlying the enhanced performance of molybdate-based nanocrystalline materials are interpreted, along with strategies for improving their efficiency and stability.
用于高效环境修复和电化学能量转换应用的钼酸盐基纳米晶体材料:最新进展
钼酸盐基纳米晶体材料因其独特的特性和多功能性,在各种能源和环境修复应用中被视为前景广阔的候选材料。本文全面概述了钼酸盐基纳米晶体材料在合成技术、表征及能源转化和生态修复技术领域的应用方面取得的最新进展。钼酸盐基纳米材料可分为硫化物、磷酸盐和混合金属化合物,可通过湿化学方法有效合成。研究解释了钼酸盐基纳米晶体材料性能增强的内在机制,以及提高其效率和稳定性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Chemistry
Asian Journal of Chemistry 化学-化学综合
CiteScore
0.80
自引率
0.00%
发文量
229
审稿时长
4 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信