Existence and uniqueness results for an elliptic equation with blowing-up coefficient and lower order term

IF 0.9 Q2 MATHEMATICS
Amine Marah
{"title":"Existence and uniqueness results for an elliptic equation with blowing-up coefficient and lower order term","authors":"Amine Marah","doi":"10.1007/s13370-024-01207-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the existence and uniqueness results for a class of non-coercive Dirichlet elliptic problems whose model example is </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-\\textrm{div}\\Big (\\frac{1}{(m-u)^\\beta } (1+|u|)^q |\\nabla u|^{p-2}\\nabla u+c(x)|u|^{p-2}u \\sin (u-m)\\Big )+g(u)=f\\ \\ \\textrm{in}\\ \\Omega , \\\\&amp;u=0\\ \\ \\textrm{on}\\ {\\partial \\Omega },\\\\ \\end{aligned} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\)</span> is a bounded open subset of <span>\\({\\mathbb {R}}^N (N\\ge 2)\\)</span>, <span>\\(1&lt; p &lt; N\\)</span>, <span>\\(m&gt;0\\)</span>, <span>\\(0&lt; \\beta &lt;1\\)</span>, <span>\\(q&gt;0\\)</span>, |<i>c</i>| belongs to <span>\\(L^{\\frac{N}{p-1}}(\\Omega )\\)</span> and <i>g</i> is a continuous function in <span>\\({\\mathbb {R}}\\)</span> which satisfies the sign condition and the data <i>f</i> belongs to <span>\\(L^1(\\Omega )\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01207-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the existence and uniqueness results for a class of non-coercive Dirichlet elliptic problems whose model example is

$$\begin{aligned} \left\{ \begin{aligned}&-\textrm{div}\Big (\frac{1}{(m-u)^\beta } (1+|u|)^q |\nabla u|^{p-2}\nabla u+c(x)|u|^{p-2}u \sin (u-m)\Big )+g(u)=f\ \ \textrm{in}\ \Omega , \\&u=0\ \ \textrm{on}\ {\partial \Omega },\\ \end{aligned} \right. \end{aligned}$$

where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^N (N\ge 2)\), \(1< p < N\), \(m>0\), \(0< \beta <1\), \(q>0\), |c| belongs to \(L^{\frac{N}{p-1}}(\Omega )\) and g is a continuous function in \({\mathbb {R}}\) which satisfies the sign condition and the data f belongs to \(L^1(\Omega )\).

具有吹胀系数和低阶项的椭圆方程的存在性和唯一性结果
本文讨论了一类非胁迫性 Dirichlet 椭圆问题的存在性和唯一性结果,其模型示例为 $$\begin{aligned} &-\textrm{div}\Big (\frac{1}{(m-u)^\beta })\left\{ \begin{aligned}&-\textrm{div}\Big (\frac{1}{(m-u)^\beta })(1+|u|)^q |\nabla u|^{p-2}\nabla u+c(x)|u|^{p-2}u \sin (u-m)\Big )+g(u)=f\\textrm{in}\\Omega , \&u=0\\textrm{on}\ {\partial \Omega },\\end{aligned}.\(right.\end{aligned}$where \(\Omega \) is a bounded open subset of \({\mathbb {R}}^N (N\ge 2)\),\(1< p < N\),\(m>0\),\(0< \beta <1\),\(q>;0), |c| belongs to \(L^{frac\{N}{p-1}}(\Omega )\) and g is a continuous function in \({\mathbb {R}}\) which satisfies the sign condition and the data f belongs to \(L^1(\Omega )\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信