A PROPOSED METHOD AND CASE STUDY OF WASTE HEAT RECOVERY IN AN INDUSTRIAL APPLICATION

Nikolaus Wechs, Alexander Floss, Dale K. Tiller
{"title":"A PROPOSED METHOD AND CASE STUDY OF WASTE HEAT RECOVERY IN AN INDUSTRIAL APPLICATION","authors":"Nikolaus Wechs, Alexander Floss, Dale K. Tiller","doi":"10.1115/1.4066067","DOIUrl":null,"url":null,"abstract":"\n Waste heat recovered from a refrigeration machine is associated with the double benefit of generating cold and heat with just one unit. Additional energy is required in most cases to achieve these benefits. To evaluate the efficiency of waste heat recovery, two novel efficiency indicators are described. The Overhead-COP describes additional electrical power required to raise the temperature to make waste heat useable. The Coefficient of Savings describes power reduction when condenser heat is fed into a cold district heating network instead of exhausting it to high temperature outside air. Results are reported from a case study in a food logistic center with high cooling demand in Isny, Germany. Waste heat at this facility was previously released unused to outside air. We describe how this waste heat can be used to supply sustainable heat supply to a new residential area. During the design phase, it is difficult to choose the best operating temperature for district heating networks (DHN). The novel indicators are used to value the effort to make waste heat useable. Whereas a sup-ply temperature of 20 °C has no disadvantages for the operator, a supply temperature of 40 °C is associated with an increase in electricity consumption. Resulting OCOPs are above 5.0 even under unfavourable conditions and exceed the theoretically calculated [1,2] and measured [3] COPs for air-sourced heat pumps. Although using waste heat is not free, it is beneficial when overall efficiency is considered.","PeriodicalId":326594,"journal":{"name":"ASME Journal of Engineering for Sustainable Buildings and Cities","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Engineering for Sustainable Buildings and Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4066067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Waste heat recovered from a refrigeration machine is associated with the double benefit of generating cold and heat with just one unit. Additional energy is required in most cases to achieve these benefits. To evaluate the efficiency of waste heat recovery, two novel efficiency indicators are described. The Overhead-COP describes additional electrical power required to raise the temperature to make waste heat useable. The Coefficient of Savings describes power reduction when condenser heat is fed into a cold district heating network instead of exhausting it to high temperature outside air. Results are reported from a case study in a food logistic center with high cooling demand in Isny, Germany. Waste heat at this facility was previously released unused to outside air. We describe how this waste heat can be used to supply sustainable heat supply to a new residential area. During the design phase, it is difficult to choose the best operating temperature for district heating networks (DHN). The novel indicators are used to value the effort to make waste heat useable. Whereas a sup-ply temperature of 20 °C has no disadvantages for the operator, a supply temperature of 40 °C is associated with an increase in electricity consumption. Resulting OCOPs are above 5.0 even under unfavourable conditions and exceed the theoretically calculated [1,2] and measured [3] COPs for air-sourced heat pumps. Although using waste heat is not free, it is beneficial when overall efficiency is considered.
废热回收在工业应用中的拟议方法和案例研究
从制冷机中回收的废热具有双重优势,即只需一台设备即可产生冷量和热量。在大多数情况下,需要额外的能源才能实现这些优势。为了评估余热回收的效率,介绍了两种新的效率指标。溢流系数(Overhead-COP)描述了提高温度使废热可用所需的额外电能。节约系数描述了将冷凝器热量送入冷区供热网络而不是将其排入高温室外空气时所减少的功率。本文报告了在德国伊斯尼一个制冷需求量很大的食品物流中心进行的案例研究结果。该设施的余热之前一直未使用,而是排放到室外空气中。我们介绍了如何利用这些余热为一个新住宅区提供可持续的供热。在设计阶段,很难选择区域供热网络(DHN)的最佳运行温度。新颖的指标可用于评估为利用废热所做的努力。20 °C 的上层温度对运营商没有任何不利影响,而 40 °C 的供热温度则会增加耗电量。即使在不利条件下,所产生的 OCOP 也高于 5.0,超过了空气源热泵理论计算 [1,2] 和实测 [3] 的 COP。虽然使用废热不是免费的,但考虑到整体效率,使用废热是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信