Tight analyses for subgradient descent I: Lower bounds

Nicholas J. A. Harvey, Christopher Liaw, Sikander Randhawa
{"title":"Tight analyses for subgradient descent I: Lower bounds","authors":"Nicholas J. A. Harvey, Christopher Liaw, Sikander Randhawa","doi":"10.5802/ojmo.31","DOIUrl":null,"url":null,"abstract":"Consider the problem of minimizing functions that are Lipschitz and convex, but not necessarily differentiable. We construct a function from this class for which the T th iterate of subgradient descent has error Ω(log( T ) / √ T ) . This matches a known upper bound of O (log( T ) / √ T ) . We prove analogous results for functions that are additionally strongly convex. There exists such a function for which the error of the T th iterate of subgradient descent has error Ω(log( T ) /T ) , matching a known upper bound of O (log( T ) /T ) . These results resolve a question posed by Shamir (2012)","PeriodicalId":477184,"journal":{"name":"Open journal of mathematical optimization","volume":"119 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open journal of mathematical optimization","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5802/ojmo.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the problem of minimizing functions that are Lipschitz and convex, but not necessarily differentiable. We construct a function from this class for which the T th iterate of subgradient descent has error Ω(log( T ) / √ T ) . This matches a known upper bound of O (log( T ) / √ T ) . We prove analogous results for functions that are additionally strongly convex. There exists such a function for which the error of the T th iterate of subgradient descent has error Ω(log( T ) /T ) , matching a known upper bound of O (log( T ) /T ) . These results resolve a question posed by Shamir (2012)
子梯度下降的严密分析 I:下限
考虑最小化函数的问题,这些函数具有 Lipschitz 特性和凸性,但不一定可微。我们从这类函数中构造出一个函数,对于这个函数,子梯度下降的第 T 次迭代误差为 Ω(log( T ) / √ T ) 。这与已知的 O (log( T ) / √ T ) 上限相吻合。我们将证明强凸函数的类似结果。存在这样一个函数,它的子梯度下降的第 T 次迭代的误差为 Ω(log( T ) /T ) ,与已知的上界 O (log( T ) /T ) 匹配。这些结果解决了沙米尔(2012)提出的一个问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信