{"title":"ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors","authors":"Hejun Xie, Lei Bi, Wei Han","doi":"10.5194/gmd-17-5657-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In this study, we present a new forward polarimetric radar operator called the Accurate and Efficient Radar Operator designed by ZheJiang University (ZJU-AERO). This operator was designed to interface with the numerical weather prediction (NWP) model of the global forecast system/regional mesoscale model of the China Meteorological Administration (CMA-GFS/MESO). The main objective of developing this observation operator was to assimilate observations from the precipitation measurement radar (PMR). It is also capable of simulating the ground-based radar's polarimetric radar variables, excluding the Doppler variables such as radial velocity and spectrum width. To calculate the hydrometeor optical properties of ZJU-AERO, we utilize the invariant-imbedding T-matrix (IITM) method, which can handle non-spherical and inhomogeneous hydrometeor particles in the atmosphere. The optical database of ZJU-AERO was designed with a multi-layered architecture to ensure the flexibility in hydrometeor morphology and orientation specifications while maintaining operational efficiency. Specifically, three levels of databases are created that store the single-scattering properties for different shapes at discrete sizes for various fixed orientations, integrated single-scattering properties over shapes and orientations, and bulk-scattering properties incorporating the size average, respectively. In this work, we elaborate on the design concepts, physical basis, and hydrometeor specifications of ZJU-AERO. Additionally, we present a case study demonstrating the application of ZJU-AERO in simulating the radar observations of Typhoon Haishen.\n","PeriodicalId":509138,"journal":{"name":"Geoscientific Model Development","volume":"15 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-17-5657-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. In this study, we present a new forward polarimetric radar operator called the Accurate and Efficient Radar Operator designed by ZheJiang University (ZJU-AERO). This operator was designed to interface with the numerical weather prediction (NWP) model of the global forecast system/regional mesoscale model of the China Meteorological Administration (CMA-GFS/MESO). The main objective of developing this observation operator was to assimilate observations from the precipitation measurement radar (PMR). It is also capable of simulating the ground-based radar's polarimetric radar variables, excluding the Doppler variables such as radial velocity and spectrum width. To calculate the hydrometeor optical properties of ZJU-AERO, we utilize the invariant-imbedding T-matrix (IITM) method, which can handle non-spherical and inhomogeneous hydrometeor particles in the atmosphere. The optical database of ZJU-AERO was designed with a multi-layered architecture to ensure the flexibility in hydrometeor morphology and orientation specifications while maintaining operational efficiency. Specifically, three levels of databases are created that store the single-scattering properties for different shapes at discrete sizes for various fixed orientations, integrated single-scattering properties over shapes and orientations, and bulk-scattering properties incorporating the size average, respectively. In this work, we elaborate on the design concepts, physical basis, and hydrometeor specifications of ZJU-AERO. Additionally, we present a case study demonstrating the application of ZJU-AERO in simulating the radar observations of Typhoon Haishen.