Numerical Solution of Third-Order Rosenau–Hyman and Fornberg–Whitham Equations via B-Spline Interpolation Approach

Axioms Pub Date : 2024-07-26 DOI:10.3390/axioms13080501
Tanveer Akbar, S. Haq, S. Arifeen, A. Iqbal
{"title":"Numerical Solution of Third-Order Rosenau–Hyman and Fornberg–Whitham Equations via B-Spline Interpolation Approach","authors":"Tanveer Akbar, S. Haq, S. Arifeen, A. Iqbal","doi":"10.3390/axioms13080501","DOIUrl":null,"url":null,"abstract":"This study aims to find the numerical solution of the Rosenau–Hyman and Fornberg–Whitham equations via the quintic B-spline collocation method. Quintic B-spline, along with finite difference and theta-weighted schemes, is used for the discretization and approximation purposes. The effectiveness and robustness of the procedure is assessed by comparing the computed results with the exact and available results in the literature using absolute and relative error norms. The stability of the proposed scheme is studied using von Neumann stability analysis. Graphical representations are drawn to analyze the behavior of the solution.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"29 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13080501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to find the numerical solution of the Rosenau–Hyman and Fornberg–Whitham equations via the quintic B-spline collocation method. Quintic B-spline, along with finite difference and theta-weighted schemes, is used for the discretization and approximation purposes. The effectiveness and robustness of the procedure is assessed by comparing the computed results with the exact and available results in the literature using absolute and relative error norms. The stability of the proposed scheme is studied using von Neumann stability analysis. Graphical representations are drawn to analyze the behavior of the solution.
通过 B-样条插值法数值求解三阶罗森瑙-海曼和福恩贝格-维瑟姆方程
本研究旨在通过五次 B-样条拼合法求得 Rosenau-Hyman 和 Fornberg-Whitham 方程的数值解。在离散化和近似化过程中,使用了五次 B-样条曲线以及有限差分和 Theta 加权方案。通过使用绝对误差和相对误差规范将计算结果与精确结果和文献中的可用结果进行比较,评估了该程序的有效性和稳健性。利用 von Neumann 稳定性分析法研究了拟议方案的稳定性。还绘制了图表来分析解决方案的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信