{"title":"On the cohomology of 𝑝-adic analytic spaces, I: The basic comparison theorem","authors":"Pierre Colmez, Wiesława Nizioł","doi":"10.1090/jag/835","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to prove a basic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\n <mml:semantics>\n <mml:mi>C</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic field: <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper B Subscript d upper R Superscript plus\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">B</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>dR</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">{\\mathbf B}^+_{\\operatorname {dR} }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale and syntomic cohomologies into sheaves on the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper P normal e normal r normal f Subscript upper C\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">P</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">f</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {Perf}}_C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of perfectoid spaces over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C\">\n <mml:semantics>\n <mml:mi>C</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript normal s normal t\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">s</mml:mi>\n <mml:mi mathvariant=\"normal\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">C_{\\mathrm {st}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-conjecture in the sequel to this paper and in the formulation of duality for geometric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic pro-étale cohomology).</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/835","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to prove a basic pp-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure CC of a pp-adic field: pp-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over BdR+{\mathbf B}^+_{\operatorname {dR} }). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning pp-adic pro-étale and syntomic cohomologies into sheaves on the category PerfC{\mathrm {Perf}}_C of perfectoid spaces over CC and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the CstC_{\mathrm {st}}-conjecture in the sequel to this paper and in the formulation of duality for geometric pp-adic pro-étale cohomology).
本文的目的是证明在一个 p p -adic 场的代数闭包 C C 上的光滑刚性解析变种和匕首变种的一个基本 p p -adic 比较定理:在一个稳定范围内,p p -adic pro-étale cohomology 可以表示为 de Rham cohomology (over B dR + {\mathbf B}^+_{\operatorname {dR}) 的滤波 Frobenius 特征空间。} ).关键的计算是从绝对晶体同调到兵多-加藤同调的过程,以及相关的兵多-加藤同构的构造。我们还 "几何化 "了我们的比较定理,把 p p -adic pro-étale 和 syntomic cohomologies 转化为在 C C 上的完形空间类别 P e r f C {\mathrm {Perf}}_C 上的剪子,并把周期态变转化为这些剪子之间的映射(这种几何化将在我们对 C s t C_{\mathrm {st}} 的研究中起到关键作用)。 -猜想以及几何 p p -adic pro-étale cohomology 的对偶性表述中至关重要)。
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.