Day-of-Week, Month, and Seasonal Demand Variations: Comparing Flow Estimates Across New Travel Data Sources

Findings Pub Date : 2024-07-26 DOI:10.32866/001c.118815
Kentaro Mori, Kara M. Kockelman
{"title":"Day-of-Week, Month, and Seasonal Demand Variations: Comparing Flow Estimates Across New Travel Data Sources","authors":"Kentaro Mori, Kara M. Kockelman","doi":"10.32866/001c.118815","DOIUrl":null,"url":null,"abstract":"Transportation planners and engineers are increasingly interested in incorporating demand variations into travel models. Regression models are used to predict and compare variations in permanent traffic recorder (PTR) counts along Texas highways to vehicle-kilometers traveled (VKT) inferred from INRIX’s probe-vehicle data across days of the year. Results suggest INRIX data do not illuminate month-of-year variations in network use, due to random or unexpected shifts in sampling rates, but significant day-of-week differences are clear in both. Furthermore, INRIX appears to capture much more light-duty-vehicle travel than PTRs on Saturdays, but this may be due to location-based services’ over-counting of vehicles carrying multiple mobile devices and/or PTRs’ highway-site bias.","PeriodicalId":508951,"journal":{"name":"Findings","volume":"24 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.118815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transportation planners and engineers are increasingly interested in incorporating demand variations into travel models. Regression models are used to predict and compare variations in permanent traffic recorder (PTR) counts along Texas highways to vehicle-kilometers traveled (VKT) inferred from INRIX’s probe-vehicle data across days of the year. Results suggest INRIX data do not illuminate month-of-year variations in network use, due to random or unexpected shifts in sampling rates, but significant day-of-week differences are clear in both. Furthermore, INRIX appears to capture much more light-duty-vehicle travel than PTRs on Saturdays, but this may be due to location-based services’ over-counting of vehicles carrying multiple mobile devices and/or PTRs’ highway-site bias.
周日、月份和季节性需求变化:比较新旅行数据源的流量估计值
交通规划人员和工程师对将需求变化纳入交通模型的兴趣与日俱增。回归模型用于预测和比较德克萨斯州高速公路永久交通记录仪(PTR)计数与 INRIX 探针车辆数据推断出的全年各天车辆行驶公里数(VKT)的变化。结果表明,由于采样率的随机或意外变化,INRIX 数据并不能揭示网络使用的年月变化,但两者在周日的显著差异是显而易见的。此外,与 PTR 相比,INRIX 在周六捕捉到的轻型车辆出行数据似乎要多得多,但这可能是由于定位服务对携带多个移动设备的车辆进行了过多计算,以及/或 PTR 的高速公路站点偏差造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信