Numerical simulations of the acoustic and electrical properties of digital rocks based on tetrahedral unstructured mesh

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Zhanshan Xiao, Haining Zhang, Yi Wang, Hao Ni, Xuefeng Liu, Jianbin Zhao, Yonghao Zhang, Chenjun Zhang, Bo Wei
{"title":"Numerical simulations of the acoustic and electrical properties of digital rocks based on tetrahedral unstructured mesh","authors":"Zhanshan Xiao, Haining Zhang, Yi Wang, Hao Ni, Xuefeng Liu, Jianbin Zhao, Yonghao Zhang, Chenjun Zhang, Bo Wei","doi":"10.1093/jge/gxae077","DOIUrl":null,"url":null,"abstract":"\n Unconventional reservoirs typically exhibit strong heterogeneity leading to a significant scale effect in digital rock physics simulations. To ensure the reliability of the simulation results, improving computational efficiency and increasing sample sizes are crucial. In this study, we present a numerical finite element simulation method for the acoustic and electrical properties of digital rock cores based on tetrahedral unstructured meshes. We calculated the elastic moduli and electrical resistivity of the Fontainebleau sandstone digital rock samples. A comparison was made between the tetrahedral mesh and the traditional voxel-based hexahedral mesh in terms of the accuracy and efficiency of finite element numerical simulations. The results indicate that this numerical simulation method based on the tetrahedral mesh exhibits high accuracy comparable to experimental results, and its computational efficiency is significantly improved compared to the traditional hexahedral mesh method. These findings highlight the advantages of this finite element simulation method in improving the computational scale and efficiency of digital rock simulations. It effectively addresses common computational resource constraints in dealing with large-scale core systems and facilitates better integration with engineering construction, well-logging instrument simulations, and production applications.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae077","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Unconventional reservoirs typically exhibit strong heterogeneity leading to a significant scale effect in digital rock physics simulations. To ensure the reliability of the simulation results, improving computational efficiency and increasing sample sizes are crucial. In this study, we present a numerical finite element simulation method for the acoustic and electrical properties of digital rock cores based on tetrahedral unstructured meshes. We calculated the elastic moduli and electrical resistivity of the Fontainebleau sandstone digital rock samples. A comparison was made between the tetrahedral mesh and the traditional voxel-based hexahedral mesh in terms of the accuracy and efficiency of finite element numerical simulations. The results indicate that this numerical simulation method based on the tetrahedral mesh exhibits high accuracy comparable to experimental results, and its computational efficiency is significantly improved compared to the traditional hexahedral mesh method. These findings highlight the advantages of this finite element simulation method in improving the computational scale and efficiency of digital rock simulations. It effectively addresses common computational resource constraints in dealing with large-scale core systems and facilitates better integration with engineering construction, well-logging instrument simulations, and production applications.
基于四面体非结构网格的数字岩石声电特性数值模拟
非常规储层通常表现出很强的异质性,这导致数字岩石物理模拟中存在明显的规模效应。为了确保模拟结果的可靠性,提高计算效率和增加样本量至关重要。在本研究中,我们提出了一种基于四面体非结构网格的数字岩心声学和电学特性有限元数值模拟方法。我们计算了枫丹白露砂岩数字岩石样本的弹性模量和电阻率。在有限元数值模拟的精度和效率方面,对四面体网格和传统的基于体素的六面体网格进行了比较。结果表明,这种基于四面体网格的数值模拟方法表现出了与实验结果相当的高精度,而且与传统的六面体网格方法相比,其计算效率明显提高。这些发现凸显了这种有限元模拟方法在提高数字岩石模拟计算规模和效率方面的优势。它有效地解决了处理大规模岩心系统时常见的计算资源限制问题,促进了与工程建设、测井仪器模拟和生产应用的更好结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信