Delchere DON-TSA, Messanh Agbéko Mohou, K. Amouzouvi, Malik Maaza, K. Beltako
{"title":"Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning","authors":"Delchere DON-TSA, Messanh Agbéko Mohou, K. Amouzouvi, Malik Maaza, K. Beltako","doi":"10.1088/2632-2153/ad6831","DOIUrl":null,"url":null,"abstract":"\n The high computational demand of the Density Functional Theory (DFT) based method for screening new materials properties remains a strong limitation to the development of clean and renewable energy technologies essential to transition to a carbon-neutral environment in the coming decades. Machine Learning comes into play with its innate capacity to handle huge amounts of data and high-dimensional statistical analysis. In this paper, supervised Machine Learning models together with data analysis on existing datasets obtained from a high-throughput calculation using Density Functional Theory are used to predict the Seebeck coefficient, electrical conductivity, and power factor of inorganic compounds. The analysis revealed a strong dependence of the thermoelectric properties on the effective masses, we also proposed a machine learning model for the prediction of highly performing thermoelectric materials which reached an efficiency of 95 percent. The analyzed data and developed model can significantly contribute to innovation by providing a faster and more accurate prediction of thermoelectric properties, thereby, facilitating the discovery of highly efficient thermoelectric materials.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"53 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high computational demand of the Density Functional Theory (DFT) based method for screening new materials properties remains a strong limitation to the development of clean and renewable energy technologies essential to transition to a carbon-neutral environment in the coming decades. Machine Learning comes into play with its innate capacity to handle huge amounts of data and high-dimensional statistical analysis. In this paper, supervised Machine Learning models together with data analysis on existing datasets obtained from a high-throughput calculation using Density Functional Theory are used to predict the Seebeck coefficient, electrical conductivity, and power factor of inorganic compounds. The analysis revealed a strong dependence of the thermoelectric properties on the effective masses, we also proposed a machine learning model for the prediction of highly performing thermoelectric materials which reached an efficiency of 95 percent. The analyzed data and developed model can significantly contribute to innovation by providing a faster and more accurate prediction of thermoelectric properties, thereby, facilitating the discovery of highly efficient thermoelectric materials.