The Unified Description of Abstract Convexity Structures

Axioms Pub Date : 2024-07-26 DOI:10.3390/axioms13080506
Chunrong Mo, Yanlong Yang
{"title":"The Unified Description of Abstract Convexity Structures","authors":"Chunrong Mo, Yanlong Yang","doi":"10.3390/axioms13080506","DOIUrl":null,"url":null,"abstract":"The convexity of space is essential in nonlinear analysis, variational inequalities and optimization theory because it guarantees the existence and uniqueness of solutions to a certain extent. Because of its wide variety of applications, mathematicians have extensively promoted and researched convexity. This paper reviews some representative convexity structures and discusses their relations from their definitions, unifying them in the abstract convex structure. Moreover, applications of main convexity structures including KKM theory and fixed point theory will be reviewed.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"51 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13080506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The convexity of space is essential in nonlinear analysis, variational inequalities and optimization theory because it guarantees the existence and uniqueness of solutions to a certain extent. Because of its wide variety of applications, mathematicians have extensively promoted and researched convexity. This paper reviews some representative convexity structures and discusses their relations from their definitions, unifying them in the abstract convex structure. Moreover, applications of main convexity structures including KKM theory and fixed point theory will be reviewed.
抽象凸面结构的统一描述
空间的凸性在非线性分析、变式不等式和优化理论中至关重要,因为它在一定程度上保证了解的存在性和唯一性。由于凸性的广泛应用,数学家们对凸性进行了广泛的宣传和研究。本文回顾了一些有代表性的凸性结构,并从它们的定义出发讨论了它们之间的关系,将它们统一在抽象的凸性结构中。此外,本文还将综述主要凸性结构的应用,包括 KKM 理论和定点理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信