Guanghui Li, Taihua Zhang, Chieh-Yuan Tsai, Yao Lu, Jun Yang, Liguo Yao
{"title":"Modified Crayfish Optimization Algorithm with Adaptive Spiral Elite Greedy Opposition-based Learning and Search-hide Strategy for Global Optimization","authors":"Guanghui Li, Taihua Zhang, Chieh-Yuan Tsai, Yao Lu, Jun Yang, Liguo Yao","doi":"10.1093/jcde/qwae069","DOIUrl":null,"url":null,"abstract":"\n Crayfish optimization algorithm (COA) is a novel, bionic, metaheuristic algorithm with high convergence speed and solution accuracy. However, in some complex optimization problems and real application scenarios, the performance of COA is not satisfactory. In order to overcome the challenges encountered by COA, such as being stuck in the local optimal and insufficient search range, this paper proposes four improvement strategies: search-hide, adaptive spiral elite greedy opposition-based learning (ASEG-OBL), competition-elimination, and chaos mutation. To evaluate the convergence accuracy, speed, and robustness of the modified crayfish optimization algorithm (MCOA), some simulation comparison experiments of 10 algorithms are conducted. Experimental results show that the MCOA achieved the minor Friedman test (FT) value in 23 test functions, CEC2014, and CEC2020, and achieved average superiority rates of 80.97%, 72.59%, and 71.11% in the Wilcoxon rank sum test (WT) respectively. In addition, MCOA shows high applicability and progressiveness in five engineering problems in actual industrial field. Moreover, MCOA achieved 80% and 100% superiority rate against COA on CEC2020 and the fixed-dimension function of 23 benchmark test functions. Finally, MCOA owns better convergence and population diversity.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae069","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Crayfish optimization algorithm (COA) is a novel, bionic, metaheuristic algorithm with high convergence speed and solution accuracy. However, in some complex optimization problems and real application scenarios, the performance of COA is not satisfactory. In order to overcome the challenges encountered by COA, such as being stuck in the local optimal and insufficient search range, this paper proposes four improvement strategies: search-hide, adaptive spiral elite greedy opposition-based learning (ASEG-OBL), competition-elimination, and chaos mutation. To evaluate the convergence accuracy, speed, and robustness of the modified crayfish optimization algorithm (MCOA), some simulation comparison experiments of 10 algorithms are conducted. Experimental results show that the MCOA achieved the minor Friedman test (FT) value in 23 test functions, CEC2014, and CEC2020, and achieved average superiority rates of 80.97%, 72.59%, and 71.11% in the Wilcoxon rank sum test (WT) respectively. In addition, MCOA shows high applicability and progressiveness in five engineering problems in actual industrial field. Moreover, MCOA achieved 80% and 100% superiority rate against COA on CEC2020 and the fixed-dimension function of 23 benchmark test functions. Finally, MCOA owns better convergence and population diversity.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.