ARQUIN : Architectures for Multinode Superconducting Quantum Computers

James A. Ang, Gabriella Carini, Yanzhu Chen, Isaac Chuang, Michael Demarco, Sophia Economou, A. Eickbusch, Andrei Faraon, Kai-Mei C. Fu, Steven Girvin, M. Hatridge, A. Houck, Paul Hilaire, Kevin Krsulich, Ang Li, Chenxu Liu, Yuan Liu, M. Martonosi, David McKay, Jim Misewich, Mark Ritter, R. Schoelkopf, S. Stein, S. Sussman, Hong Tang, Wei Tang, T. Tomesh, N. Tubman, Chen Wang, Nathan Wiebe, Yongxi Yao, D. Yost, Yiyu Zhou
{"title":"ARQUIN : Architectures for Multinode Superconducting Quantum Computers","authors":"James A. Ang, Gabriella Carini, Yanzhu Chen, Isaac Chuang, Michael Demarco, Sophia Economou, A. Eickbusch, Andrei Faraon, Kai-Mei C. Fu, Steven Girvin, M. Hatridge, A. Houck, Paul Hilaire, Kevin Krsulich, Ang Li, Chenxu Liu, Yuan Liu, M. Martonosi, David McKay, Jim Misewich, Mark Ritter, R. Schoelkopf, S. Stein, S. Sussman, Hong Tang, Wei Tang, T. Tomesh, N. Tubman, Chen Wang, Nathan Wiebe, Yongxi Yao, D. Yost, Yiyu Zhou","doi":"10.1145/3674151","DOIUrl":null,"url":null,"abstract":"Many proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this paper, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10-100x better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations","PeriodicalId":504393,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"47 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3674151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this paper, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10-100x better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations
ARQUIN:多节点超导量子计算机体系结构
许多扩大量子技术规模的建议都依赖于模块化或分布式设计,将单个量子处理器(称为节点)连接起来,形成一台大型多节点量子计算机(MNQC)。构建 MNQC 的一种可扩展方法是使用带有光互连的超导量子系统。然而,这些系统中的节点间门可能比本地操作的噪声和速度慢两到三个数量级。要克服节间门的限制,需要改进纠缠生成、使用纠缠蒸馏以及优化软件和编译器。不过,目前还不清楚现有硬件能实现怎样的性能,也不清楚算法需要怎样的性能。在本文中,我们采用了一种系统分析方法,根据节点间链路、纠缠蒸馏和本地架构的硬件模型来量化 MNQC 的整体性能。我们展示了如何在算法性能的背景下权衡纠缠生成和蒸馏,阐述了编译器和软件应如何平衡本地门和节点间门,并讨论了何时噪声量子节点间链路比纯经典链路更具优势。我们发现,链路性能需要提高 10-100 倍,并介绍了实现早期 MNQC 的硬件和软件协同设计研究路线图。虽然我们的重点是带有光互连的超导设备,但我们的方法适用于所有 MNQC 实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信