Underwater manipulator arm control based on Harris Hawk algorithm optimized RBF neural network

Chuanzhe Zhao, Haibo Wang, Yadi Song, Ronglin Wang, Zhifeng Li, Pengtao Li
{"title":"Underwater manipulator arm control based on Harris Hawk algorithm optimized RBF neural network","authors":"Chuanzhe Zhao, Haibo Wang, Yadi Song, Ronglin Wang, Zhifeng Li, Pengtao Li","doi":"10.1088/2631-8695/ad681a","DOIUrl":null,"url":null,"abstract":"\n This article addresses the control issues of underwater manipulator arms in complex marine environments, proposing a composite control strategy based on the Harris Hawk Optimization (HHO) algorithm and Radial Basis Function (RBF) neural network. Combining the global search capability of the HHO algorithm with the fast approximation characteristics of RBF neural networks, a self-adaptive control method for underwater manipulator arms is designed. By automatically optimizing the parameters of the neural network, the performance and robustness of the control system are enhanced. Through simulation experiments, the effectiveness of the proposed control algorithm is verified. The results show that compared with traditional RBF neural network control, the proposed optimization control algorithm significantly improves the traditional RBF neural network control, demonstrating good control effects and higher practical value, providing an effective solution for the precise control of underwater manipulator arms.","PeriodicalId":505725,"journal":{"name":"Engineering Research Express","volume":"32 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad681a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the control issues of underwater manipulator arms in complex marine environments, proposing a composite control strategy based on the Harris Hawk Optimization (HHO) algorithm and Radial Basis Function (RBF) neural network. Combining the global search capability of the HHO algorithm with the fast approximation characteristics of RBF neural networks, a self-adaptive control method for underwater manipulator arms is designed. By automatically optimizing the parameters of the neural network, the performance and robustness of the control system are enhanced. Through simulation experiments, the effectiveness of the proposed control algorithm is verified. The results show that compared with traditional RBF neural network control, the proposed optimization control algorithm significantly improves the traditional RBF neural network control, demonstrating good control effects and higher practical value, providing an effective solution for the precise control of underwater manipulator arms.
基于 Harris Hawk 算法优化 RBF 神经网络的水下机械臂控制
本文针对复杂海洋环境中水下机械臂的控制问题,提出了一种基于哈里斯鹰优化(HHO)算法和径向基函数(RBF)神经网络的复合控制策略。结合 HHO 算法的全局搜索能力和 RBF 神经网络的快速逼近特性,设计了一种水下机械臂的自适应控制方法。通过自动优化神经网络参数,提高了控制系统的性能和鲁棒性。通过仿真实验,验证了所提控制算法的有效性。结果表明,与传统的 RBF 神经网络控制相比,所提出的优化控制算法明显改善了传统的 RBF 神经网络控制,表现出良好的控制效果和更高的实用价值,为水下机械臂的精确控制提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信