{"title":"Use of Digital Technology in Integrated Mathematics Education","authors":"A. Cirneanu, Cristian-Emil Moldoveanu","doi":"10.3390/asi7040066","DOIUrl":null,"url":null,"abstract":"Digital learning environments create a dynamic and engaging learning and teaching context that promotes a deeper understanding of complex concepts, eases the teaching process and fosters a passion for learning. Moreover, integrating interactive materials into pilot courses can assist teachers in better assessing student learning and adjusting their teaching strategies accordingly. The teachers can also receive valuable insights into students’ strengths and weaknesses, allowing them to provide targeted support and intervention when needed. For students from the defence and security fields, digital learning environments can create realistic simulations and virtual training scenarios that allow students to practise their skills in a controlled and safe environment, develop hands-on experience, and enhance their decision-making abilities without the need for real-world training exercises. In this context, the purpose of this paper is to introduce an approach for solving mathematical problems embedded in technical scenarios within the defence and security fields with the aid of digital technology using different software environments such as Python, Matlab, or SolidWorks. In this way, students can visualise abstract concepts, experiment with different scenarios, and receive instant feedback on their understanding. At the same time, the use of didactic and interactive materials can increase the interest among students and teachers for utilising mathematical models and digital technologies in the educational process. This paper also helps to reinforce key concepts and enhance problem-solving skills, sparking curiosity and creativity, and encouraging active participation and collaboration. Throughout the development of this proposal, based on survey analysis, good practices are presented, and advice for improvement is collected while having a wide range of users giving feedback, and participating in discussions and testing (pilot) short-term learning/teaching/training activities.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7040066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital learning environments create a dynamic and engaging learning and teaching context that promotes a deeper understanding of complex concepts, eases the teaching process and fosters a passion for learning. Moreover, integrating interactive materials into pilot courses can assist teachers in better assessing student learning and adjusting their teaching strategies accordingly. The teachers can also receive valuable insights into students’ strengths and weaknesses, allowing them to provide targeted support and intervention when needed. For students from the defence and security fields, digital learning environments can create realistic simulations and virtual training scenarios that allow students to practise their skills in a controlled and safe environment, develop hands-on experience, and enhance their decision-making abilities without the need for real-world training exercises. In this context, the purpose of this paper is to introduce an approach for solving mathematical problems embedded in technical scenarios within the defence and security fields with the aid of digital technology using different software environments such as Python, Matlab, or SolidWorks. In this way, students can visualise abstract concepts, experiment with different scenarios, and receive instant feedback on their understanding. At the same time, the use of didactic and interactive materials can increase the interest among students and teachers for utilising mathematical models and digital technologies in the educational process. This paper also helps to reinforce key concepts and enhance problem-solving skills, sparking curiosity and creativity, and encouraging active participation and collaboration. Throughout the development of this proposal, based on survey analysis, good practices are presented, and advice for improvement is collected while having a wide range of users giving feedback, and participating in discussions and testing (pilot) short-term learning/teaching/training activities.