Rui Ma, Xiaodan Zhang, Duncan Sutherland, V. Bochenkov, Shikai Deng
{"title":"Nanofabrication of Nanostructure Lattices: from High-Quality Large Patterns to Precise Hybrid Units","authors":"Rui Ma, Xiaodan Zhang, Duncan Sutherland, V. Bochenkov, Shikai Deng","doi":"10.1088/2631-7990/ad6838","DOIUrl":null,"url":null,"abstract":"\n Sub-wavelength nanostructure lattices provide versatile platforms for light control and the basis for various novel phenomena and applications in physics, material science, chemistry, biology, and energy. The thriving study of nanostructure lattices is building on the remarkable progress of nanofabrication techniques, especially for the possibility of fabricating larger-area patterns while achieving higher-quality lattices, complex shapes, and hybrid materials units. In this review, we present a comprehensive review of techniques for large-area fabrication of optical nanostructure arrays, encompassing direct writing, self-assembly, controllable growth, and nanoimprint/print methods. Furthermore, a particular focus is made on the recent improvement of unit accuracy and diversity, leading to integrated and multifunctional structures for devices and applications.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad6838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sub-wavelength nanostructure lattices provide versatile platforms for light control and the basis for various novel phenomena and applications in physics, material science, chemistry, biology, and energy. The thriving study of nanostructure lattices is building on the remarkable progress of nanofabrication techniques, especially for the possibility of fabricating larger-area patterns while achieving higher-quality lattices, complex shapes, and hybrid materials units. In this review, we present a comprehensive review of techniques for large-area fabrication of optical nanostructure arrays, encompassing direct writing, self-assembly, controllable growth, and nanoimprint/print methods. Furthermore, a particular focus is made on the recent improvement of unit accuracy and diversity, leading to integrated and multifunctional structures for devices and applications.