Multiscale Experiments and Predictive Modeling for Failure Mitigation in Additive Manufacturing of Lattices

M. Utzeri, Marco Sasso, Vikram S. Deshpande, Shanmugam Kumar
{"title":"Multiscale Experiments and Predictive Modeling for Failure Mitigation in Additive Manufacturing of Lattices","authors":"M. Utzeri, Marco Sasso, Vikram S. Deshpande, Shanmugam Kumar","doi":"10.1002/admt.202400457","DOIUrl":null,"url":null,"abstract":"Additive Manufacturing (AM) empowers the creation of high‐performance cellular materials, underscoring the increasing need for programmable and predictable energy absorption capabilities. This study evaluates the impact of a precisely tuned fused filament fabrication (FFF) process on the energy absorption and failure characteristics of 2D‐thermoplastic lattice materials through multiscale experiments and predictive modeling. Macroscale in‐plane compression testing of both thick‐ and thin‐walled lattices, along with their µ‐CT imaging, reveal relative density‐dependent damage mechanisms and failure modes, prompting the development of a robust predictive modeling framework to capture process‐induced performance variation and damage. For lower relative density lattices, an FE model based on the extended Drucker–Prager material model, incorporating Bridgman's correction with crazing failure criteria, accurately captures the crushing response. As lattice density increases, interfacial damage along bead‐bead interfaces becomes predominant, necessitating the enrichment of the model with a microscale cohesive zone model to capture interfacial debonding. The predictive modeling introduces an enhancement factor, offering a straightforward method to assess the impact of the AM process on energy absorption performance, thereby facilitating the inverse design of FFF‐printed lattices. This approach provides a critical evaluation of how FFF processes can be optimized to achieve the highest attainable performance and mitigate failures in architected materials.","PeriodicalId":504693,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive Manufacturing (AM) empowers the creation of high‐performance cellular materials, underscoring the increasing need for programmable and predictable energy absorption capabilities. This study evaluates the impact of a precisely tuned fused filament fabrication (FFF) process on the energy absorption and failure characteristics of 2D‐thermoplastic lattice materials through multiscale experiments and predictive modeling. Macroscale in‐plane compression testing of both thick‐ and thin‐walled lattices, along with their µ‐CT imaging, reveal relative density‐dependent damage mechanisms and failure modes, prompting the development of a robust predictive modeling framework to capture process‐induced performance variation and damage. For lower relative density lattices, an FE model based on the extended Drucker–Prager material model, incorporating Bridgman's correction with crazing failure criteria, accurately captures the crushing response. As lattice density increases, interfacial damage along bead‐bead interfaces becomes predominant, necessitating the enrichment of the model with a microscale cohesive zone model to capture interfacial debonding. The predictive modeling introduces an enhancement factor, offering a straightforward method to assess the impact of the AM process on energy absorption performance, thereby facilitating the inverse design of FFF‐printed lattices. This approach provides a critical evaluation of how FFF processes can be optimized to achieve the highest attainable performance and mitigate failures in architected materials.

Abstract Image

多尺度实验和预测建模用于网格增材制造中的故障缓解
增材制造(AM)技术有助于制造高性能的蜂窝材料,强调了对可编程和可预测能量吸收能力的日益增长的需求。本研究通过多尺度实验和预测建模,评估了精确调整的熔融长丝制造(FFF)工艺对二维热塑晶格材料的能量吸收和失效特性的影响。厚壁和薄壁晶格的宏观面内压缩测试及其 µ-CT 成像揭示了与相对密度相关的损坏机制和失效模式,从而促使开发出一种稳健的预测建模框架,以捕捉工艺引起的性能变化和损坏。对于相对密度较低的晶格,基于扩展德鲁克-普拉格材料模型的有限元模型结合布里奇曼校正和裂纹失效标准,可以准确捕捉破碎响应。随着晶格密度的增加,珠粒-珠粒界面上的界面破坏成为主要现象,因此有必要使用微尺度内聚区模型来丰富模型,以捕捉界面脱粘现象。预测模型引入了一个增强因子,提供了一种直接的方法来评估 AM 工艺对能量吸收性能的影响,从而促进了 FFF 印刷晶格的逆向设计。这种方法对如何优化 FFF 工艺以实现最高性能和减少架构材料的失效进行了重要评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信