Simplifying causal gene identification in GWAS loci

M. Schipper, J. C. Ulirsch, D. Posthuma, S. Ripke, K. Heilbron
{"title":"Simplifying causal gene identification in GWAS loci","authors":"M. Schipper, J. C. Ulirsch, D. Posthuma, S. Ripke, K. Heilbron","doi":"10.1101/2024.07.26.24311057","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS gene prioritization tools are powerful, but often use complex black box models trained on datasets containing unaddressed biases. Here we present CALDERA, a gene prioritization tool that achieves similar or better performance than state-of-the-art methods, but uses just 12 features and a simple logistic regression model with L1 regularization. We use a data-driven approach to construct a truth set of causal genes in 406 GWAS loci and correct for potential confounders. We demonstrate that CALDERA is well-calibrated in external datasets and prioritizes genes with expected properties, such as being mutation-intolerant (OR = 1.751 for pLI > 90%, P = 8.45x10-3). CALDERA facilitates the prioritization of potentially causal genes in GWAS loci and may help identify novel genetics-driven drug targets.","PeriodicalId":506788,"journal":{"name":"medRxiv","volume":"18 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.26.24311057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS gene prioritization tools are powerful, but often use complex black box models trained on datasets containing unaddressed biases. Here we present CALDERA, a gene prioritization tool that achieves similar or better performance than state-of-the-art methods, but uses just 12 features and a simple logistic regression model with L1 regularization. We use a data-driven approach to construct a truth set of causal genes in 406 GWAS loci and correct for potential confounders. We demonstrate that CALDERA is well-calibrated in external datasets and prioritizes genes with expected properties, such as being mutation-intolerant (OR = 1.751 for pLI > 90%, P = 8.45x10-3). CALDERA facilitates the prioritization of potentially causal genes in GWAS loci and may help identify novel genetics-driven drug targets.
简化 GWAS 基因位点的因果基因鉴定
全基因组关联研究(GWAS)有助于确定与疾病相关的基因变异,但在 GWAS 基因位点中精确定位最可能的致病基因仍具有挑战性。现有的全基因组关联研究基因优先排序工具功能强大,但通常使用在含有未解决偏差的数据集上训练的复杂黑盒模型。在这里,我们介绍一种基因优先排序工具 CALDERA,它只使用 12 个特征和一个简单的 L1 正则化逻辑回归模型,却能达到与最先进方法相似甚至更好的性能。我们采用数据驱动的方法在 406 个 GWAS 基因座中构建了一个因果基因的真实集,并对潜在的混杂因素进行了校正。我们证明,CALDERA 在外部数据集中得到了很好的校准,并优先选择了具有预期特性的基因,如不耐受突变的基因(pLI > 90% 的 OR = 1.751,P = 8.45x10-3)。CALDERA有助于确定GWAS基因位点中潜在因果基因的优先级,并有助于发现新的遗传学驱动的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信