Data-driven decision making in IT: Leveraging AI and data science for business intelligence

Comfort Idongesit Michael, Oluwaseun Johnson Ipede, Adejoke Deborah Adejumo, Ibrahim Oyeyemi Adenekan, Damilola Adebayo, Adefisayo Simon Ojo, Praise Ayomide Ayodele
{"title":"Data-driven decision making in IT: Leveraging AI and data science for business intelligence","authors":"Comfort Idongesit Michael, Oluwaseun Johnson Ipede, Adejoke Deborah Adejumo, Ibrahim Oyeyemi Adenekan, Damilola Adebayo, Adefisayo Simon Ojo, Praise Ayomide Ayodele","doi":"10.30574/wjarr.2024.23.1.2010","DOIUrl":null,"url":null,"abstract":"Data-driven decision-making (DDDM) has become a cornerstone in modern IT and business landscapes, leveraging the immense potential of artificial intelligence (AI) and data science to transform raw data into actionable insights. This review paper explores the intersection of these domains, highlighting methodologies, applications, benefits, and challenges associated with integrating AI and data science into business intelligence (BI). Through an extensive review of current literature, this paper elucidates how organizations can harness these technologies to drive strategic decisions, optimize operations, and maintain a competitive edge.","PeriodicalId":23739,"journal":{"name":"World Journal of Advanced Research and Reviews","volume":"12 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Research and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjarr.2024.23.1.2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven decision-making (DDDM) has become a cornerstone in modern IT and business landscapes, leveraging the immense potential of artificial intelligence (AI) and data science to transform raw data into actionable insights. This review paper explores the intersection of these domains, highlighting methodologies, applications, benefits, and challenges associated with integrating AI and data science into business intelligence (BI). Through an extensive review of current literature, this paper elucidates how organizations can harness these technologies to drive strategic decisions, optimize operations, and maintain a competitive edge.
IT 领域的数据驱动决策:利用人工智能和数据科学实现商业智能
数据驱动决策(DDDM)利用人工智能(AI)和数据科学的巨大潜力,将原始数据转化为可操作的见解,已成为现代 IT 和业务领域的基石。本综述论文探讨了这些领域的交叉点,重点介绍了将人工智能和数据科学整合到商业智能(BI)中的相关方法、应用、优势和挑战。通过对当前文献的广泛综述,本文阐明了企业如何利用这些技术来推动战略决策、优化运营和保持竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信