{"title":"Accurate weather forecasting with dominant gradient boosting using machine learning","authors":"Suri babu Nuthalapati, Aravind Nuthalapati","doi":"10.30574/ijsra.2024.12.2.1246","DOIUrl":null,"url":null,"abstract":"This Paper examines the interesting topic of weather forecasting using ML. From kaggle.com, there is an extensive list of daily weather records for a Seattle dataset. In this chapter, gradient boosting outcomes are revealed as a result of careful data preparation and thorough examination of several machine learning models such as K-Nearest Neighbors, Support vector machine, Gradient Boosting, XGBOOST, logistic regression, and random forest class Its 80.95% accuracy was outstanding. ML traverses atmospheric dynamics that form a basis for weather predictions. It uses a highly developed method that enables it to predict the complex trends in the weather. In addition, machine learning algorithms are increasingly important for detecting non-linear relationships and patterns from large sets of complex data with time. It is critical for meteorologists in overcoming uncertainties associated with atmospheric dynamics to improve prediction. Gradient Boosting – a weather forecasting perspective in an interdisciplinary landscape involving weather science and machine learning. The current research on ML for weather forecasting has been very useful.","PeriodicalId":14366,"journal":{"name":"International Journal of Science and Research Archive","volume":"9 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science and Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/ijsra.2024.12.2.1246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This Paper examines the interesting topic of weather forecasting using ML. From kaggle.com, there is an extensive list of daily weather records for a Seattle dataset. In this chapter, gradient boosting outcomes are revealed as a result of careful data preparation and thorough examination of several machine learning models such as K-Nearest Neighbors, Support vector machine, Gradient Boosting, XGBOOST, logistic regression, and random forest class Its 80.95% accuracy was outstanding. ML traverses atmospheric dynamics that form a basis for weather predictions. It uses a highly developed method that enables it to predict the complex trends in the weather. In addition, machine learning algorithms are increasingly important for detecting non-linear relationships and patterns from large sets of complex data with time. It is critical for meteorologists in overcoming uncertainties associated with atmospheric dynamics to improve prediction. Gradient Boosting – a weather forecasting perspective in an interdisciplinary landscape involving weather science and machine learning. The current research on ML for weather forecasting has been very useful.