Predicting stock market crashes with machine learning: A review and methodological proposal

Patience Okpeke Paul, Toluwalase Vanessa Iyelolu
{"title":"Predicting stock market crashes with machine learning: A review and methodological proposal","authors":"Patience Okpeke Paul, Toluwalase Vanessa Iyelolu","doi":"10.53022/oarjst.2024.11.2.0095","DOIUrl":null,"url":null,"abstract":"This review paper examines the utilisation of machine learning techniques for predicting stock market crashes. It surveys existing methodologies, identifies common trends, and analyses strengths and weaknesses. A novel methodological framework is proposed, integrating ensemble learning, alternative data sources, and model interpretability to address limitations in current approaches. The proposed framework aims to enhance predictive accuracy, transparency, and actionable insights in financial forecasting. Future research directions include empirical validation, interdisciplinary collaboration, and the integration of emerging technologies. Continued research in leveraging machine learning for financial forecasting is vital for advancing risk management practices and fostering resilient financial systems.","PeriodicalId":499957,"journal":{"name":"Open access research journal of science and technology","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access research journal of science and technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53022/oarjst.2024.11.2.0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper examines the utilisation of machine learning techniques for predicting stock market crashes. It surveys existing methodologies, identifies common trends, and analyses strengths and weaknesses. A novel methodological framework is proposed, integrating ensemble learning, alternative data sources, and model interpretability to address limitations in current approaches. The proposed framework aims to enhance predictive accuracy, transparency, and actionable insights in financial forecasting. Future research directions include empirical validation, interdisciplinary collaboration, and the integration of emerging technologies. Continued research in leveraging machine learning for financial forecasting is vital for advancing risk management practices and fostering resilient financial systems.
用机器学习预测股市崩盘:回顾与方法论建议
本综述论文探讨了利用机器学习技术预测股市崩盘的问题。它调查了现有方法,确定了共同趋势,并分析了优缺点。本文提出了一个新颖的方法框架,整合了集合学习、替代数据源和模型可解释性,以解决当前方法的局限性。所提出的框架旨在提高金融预测的准确性、透明度和可操作性。未来的研究方向包括经验验证、跨学科合作和新兴技术的整合。利用机器学习进行金融预测的持续研究,对于推进风险管理实践和培养弹性金融体系至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信