Numerical Solution for Plane Stagnation Point Flow

Stanley A. Omenai
{"title":"Numerical Solution for Plane Stagnation Point Flow","authors":"Stanley A. Omenai","doi":"10.30574/ijsra.2024.12.2.1357","DOIUrl":null,"url":null,"abstract":"The plane stagnation point flow, where a fluid stream impinges perpendicularly on a flat surface, is a classic problem in fluid dynamics with significant theoretical and practical implications. This report presents a comprehensive numerical solution to the plane stagnation point flow using the fourth order Runge-Kutta approximation. The numerical approach is developed to solve the governing Hiemenz Flow equation. Key flow characteristics, including velocity, are analyzed, offering insights into the fluid behavior near the stagnation point.","PeriodicalId":14366,"journal":{"name":"International Journal of Science and Research Archive","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science and Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/ijsra.2024.12.2.1357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The plane stagnation point flow, where a fluid stream impinges perpendicularly on a flat surface, is a classic problem in fluid dynamics with significant theoretical and practical implications. This report presents a comprehensive numerical solution to the plane stagnation point flow using the fourth order Runge-Kutta approximation. The numerical approach is developed to solve the governing Hiemenz Flow equation. Key flow characteristics, including velocity, are analyzed, offering insights into the fluid behavior near the stagnation point.
平面停滞点流动的数值解法
平面停滞点流是流体流垂直冲击平面的现象,是流体力学中的一个经典问题,具有重要的理论和实践意义。本报告介绍了利用四阶 Runge-Kutta 近似对平面停滞点流动的全面数值求解。所开发的数值方法用于求解 Hiemenz 流动方程。报告分析了包括速度在内的主要流动特征,为停滞点附近的流体行为提供了深入见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信