{"title":"Network Based Feature Extraction Method for Fraud Detection Using Label Propagation","authors":"Ravula Muralidhar Reddy, N. N. Kumar","doi":"10.22214/ijraset.2024.63525","DOIUrl":null,"url":null,"abstract":"Abstract: Nowadays, judging the current transaction based on user history transactions is an important detection method. However, different users have different transaction behaviors, when all users use the same limit to judge whether the transaction is abnormal, it will result in higher misjudgment for some users. Aiming at the above problems, this paper proposes an individual behavior transaction detection method based on hypersphere model. In this model, considering multiple dimensions of normal historical transaction records, the characteristics of user’s transaction behavior is generated with the trend of transaction. Then, the user optimal risk threshold algorithm is proposed to determine the optimal risk threshold for each user. Finally combining the transaction behavior and the optimal risk threshold, the user behavior benchmark is formed, which is used to construct the multidimensional hypersphere model. On this basis, a mapping method for transforming transaction detection into midpoint in multidimensional space is proposed. The experiment proves that the proposed method is superior to other models, and it is found that the characterization effect of user behavior is related to the frequency of users’ transactions. Applied computing → Secure online transactions; Digital cash; Computing methodologies → Instance-based learning; Rule learning","PeriodicalId":13718,"journal":{"name":"International Journal for Research in Applied Science and Engineering Technology","volume":"28 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Research in Applied Science and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2024.63525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Nowadays, judging the current transaction based on user history transactions is an important detection method. However, different users have different transaction behaviors, when all users use the same limit to judge whether the transaction is abnormal, it will result in higher misjudgment for some users. Aiming at the above problems, this paper proposes an individual behavior transaction detection method based on hypersphere model. In this model, considering multiple dimensions of normal historical transaction records, the characteristics of user’s transaction behavior is generated with the trend of transaction. Then, the user optimal risk threshold algorithm is proposed to determine the optimal risk threshold for each user. Finally combining the transaction behavior and the optimal risk threshold, the user behavior benchmark is formed, which is used to construct the multidimensional hypersphere model. On this basis, a mapping method for transforming transaction detection into midpoint in multidimensional space is proposed. The experiment proves that the proposed method is superior to other models, and it is found that the characterization effect of user behavior is related to the frequency of users’ transactions. Applied computing → Secure online transactions; Digital cash; Computing methodologies → Instance-based learning; Rule learning