Adaptive Pixel Resilience: A Novel Defence Mechanism Against One-Pixel Adversarial Attacks on Deep Neural Networks

Smit Srivastava
{"title":"Adaptive Pixel Resilience: A Novel Defence Mechanism Against One-Pixel Adversarial Attacks on Deep Neural Networks","authors":"Smit Srivastava","doi":"10.22214/ijraset.2024.63614","DOIUrl":null,"url":null,"abstract":"Abstract: This paper presents a groundbreaking analysis of the One Pixel Attack, an insidious adversarial threat that challenges the robustness of state-of-the-art deep neural networks (DNNs). We delve into the intricate mechanics of this deceptively simple yet potent attack, which can cause misclassification by altering just a single pixel in an image. Our research not only unravels the technical underpinnings of the One Pixel Attack but also introduces Adaptive Pixel Resilience (APR), a novel defence mechanism that significantly enhances DNN robustness against this threat. Through extensive experimentation on the CIFAR10 and ImageNet datasets, we demonstrate the remarkable efficacy of APR. Our method substantially outperforms existing defence strategies, setting a new benchmark in adversarial robustness while maintaining competitive clean accuracy. The paper offers several key contributions","PeriodicalId":13718,"journal":{"name":"International Journal for Research in Applied Science and Engineering Technology","volume":"29 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Research in Applied Science and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2024.63614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: This paper presents a groundbreaking analysis of the One Pixel Attack, an insidious adversarial threat that challenges the robustness of state-of-the-art deep neural networks (DNNs). We delve into the intricate mechanics of this deceptively simple yet potent attack, which can cause misclassification by altering just a single pixel in an image. Our research not only unravels the technical underpinnings of the One Pixel Attack but also introduces Adaptive Pixel Resilience (APR), a novel defence mechanism that significantly enhances DNN robustness against this threat. Through extensive experimentation on the CIFAR10 and ImageNet datasets, we demonstrate the remarkable efficacy of APR. Our method substantially outperforms existing defence strategies, setting a new benchmark in adversarial robustness while maintaining competitive clean accuracy. The paper offers several key contributions
自适应像素复原力:针对深度神经网络单像素对抗性攻击的新型防御机制
摘要:本文对 "单像素攻击 "进行了突破性分析。"单像素攻击 "是一种阴险的对抗性威胁,它对最先进的深度神经网络(DNN)的鲁棒性提出了挑战。我们深入研究了这种看似简单、实则强大的攻击的复杂机制,这种攻击只需改变图像中的一个像素就能造成误分类。我们的研究不仅揭示了 "单像素攻击 "的技术基础,还引入了 "自适应像素复原力"(APR),这是一种新型防御机制,可显著增强 DNN 对这种威胁的鲁棒性。通过在 CIFAR10 和 ImageNet 数据集上的广泛实验,我们证明了 APR 的显著功效。我们的方法大大优于现有的防御策略,为对抗鲁棒性树立了新的标杆,同时保持了具有竞争力的净化精度。本文的主要贡献有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信