CalibNet: Dual-Branch Cross-Modal Calibration for RGB-D Salient Instance Segmentation

Jialun Pei;Tao Jiang;He Tang;Nian Liu;Yueming Jin;Deng-Ping Fan;Pheng-Ann Heng
{"title":"CalibNet: Dual-Branch Cross-Modal Calibration for RGB-D Salient Instance Segmentation","authors":"Jialun Pei;Tao Jiang;He Tang;Nian Liu;Yueming Jin;Deng-Ping Fan;Pheng-Ann Heng","doi":"10.1109/TIP.2024.3432328","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel approach for RGB-D salient instance segmentation using a dual-branch cross-modal feature calibration architecture called CalibNet. Our method simultaneously calibrates depth and RGB features in the kernel and mask branches to generate instance-aware kernels and mask features. CalibNet consists of three simple modules, a dynamic interactive kernel (DIK) and a weight-sharing fusion (WSF), which work together to generate effective instance-aware kernels and integrate cross-modal features. To improve the quality of depth features, we incorporate a depth similarity assessment (DSA) module prior to DIK and WSF. In addition, we further contribute a new DSIS dataset, which contains 1,940 images with elaborate instance-level annotations. Extensive experiments on three challenging benchmarks show that CalibNet yields a promising result, i.e., 58.0% AP with \n<inline-formula> <tex-math>$320\\times 480$ </tex-math></inline-formula>\n input size on the COME15K-E test set, which significantly surpasses the alternative frameworks. Our code and dataset will be publicly available at: \n<uri>https://github.com/PJLallen/CalibNet</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614124/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel approach for RGB-D salient instance segmentation using a dual-branch cross-modal feature calibration architecture called CalibNet. Our method simultaneously calibrates depth and RGB features in the kernel and mask branches to generate instance-aware kernels and mask features. CalibNet consists of three simple modules, a dynamic interactive kernel (DIK) and a weight-sharing fusion (WSF), which work together to generate effective instance-aware kernels and integrate cross-modal features. To improve the quality of depth features, we incorporate a depth similarity assessment (DSA) module prior to DIK and WSF. In addition, we further contribute a new DSIS dataset, which contains 1,940 images with elaborate instance-level annotations. Extensive experiments on three challenging benchmarks show that CalibNet yields a promising result, i.e., 58.0% AP with $320\times 480$ input size on the COME15K-E test set, which significantly surpasses the alternative frameworks. Our code and dataset will be publicly available at: https://github.com/PJLallen/CalibNet .
CalibNet:用于 RGB-D 突出实例分割的双分支跨模态校准。
在本研究中,我们提出了一种使用名为 CalibNet 的双分支跨模态特征校准架构进行 RGB-D 突出实例分割的新方法。我们的方法在内核和掩码分支中同时校准深度和 RGB 特征,以生成实例感知内核和掩码特征。CalibNet 由三个简单的模块组成:动态交互内核(DIK)和权重共享融合(WSF),它们共同作用生成有效的实例感知内核并整合跨模态特征。为了提高深度特征的质量,我们在 DIK 和 WSF 之前加入了深度相似性评估(DSA)模块。此外,我们还进一步贡献了一个新的 DSIS 数据集,该数据集包含 1,940 张带有详细实例级注释的图像。在三个具有挑战性的基准上进行的广泛实验表明,CalibNet 取得了可喜的成果,即在 COME15K-E 测试集上,输入大小为 320×480 的 AP 为 58.0%,大大超过了其他框架。我们的代码和数据集将在以下网站公开:https://github.com/PJLallen/CalibNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信