Lei Gao, Lan Liu, Ai-Ping Lv, Lin Fu, Zheng-Han Lian, Takuro Nunoura, Brian P Hedlund, Qing-Yu Xu, Dildar Wu, Jian Yang, Mukhtiar Ali, Meng-Meng Li, Yong-Hong Liu, André Antunes, Hong-Chen Jiang, Lei Cheng, Jian-Yu Jiao, Wen-Jun Li, Bao-Zhu Fang
{"title":"Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake.","authors":"Lei Gao, Lan Liu, Ai-Ping Lv, Lin Fu, Zheng-Han Lian, Takuro Nunoura, Brian P Hedlund, Qing-Yu Xu, Dildar Wu, Jian Yang, Mukhtiar Ali, Meng-Meng Li, Yong-Hong Liu, André Antunes, Hong-Chen Jiang, Lei Cheng, Jian-Yu Jiao, Wen-Jun Li, Bao-Zhu Fang","doi":"10.1093/ismejo/wrae147","DOIUrl":null,"url":null,"abstract":"<p><p>Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes (MAGs) from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae147","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes (MAGs) from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.