Absence of E2g Nematic Instability and Dominant A1g Response in the Kagome Metal CsV3Sb5

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zhaoyu Liu, Yue Shi, Qianni Jiang, Elliott W. Rosenberg, Jonathan M. DeStefano, Jinjin Liu, Chaowei Hu, Yuzhou Zhao, Zhiwei Wang, Yugui Yao, David Graf, Pengcheng Dai, Jihui Yang, Xiaodong Xu, Jiun-Haw Chu
{"title":"Absence of E2g Nematic Instability and Dominant A1g Response in the Kagome Metal CsV3Sb5","authors":"Zhaoyu Liu, Yue Shi, Qianni Jiang, Elliott W. Rosenberg, Jonathan M. DeStefano, Jinjin Liu, Chaowei Hu, Yuzhou Zhao, Zhiwei Wang, Yugui Yao, David Graf, Pengcheng Dai, Jihui Yang, Xiaodong Xu, Jiun-Haw Chu","doi":"10.1103/physrevx.14.031015","DOIUrl":null,"url":null,"abstract":"Ever since the discovery of the charge density wave (CDW) transition in the kagome metal <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>Sb</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math>, the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>), an additional electronic nematic instability well below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math> has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>E</mi><mrow><mn>2</mn><mi>g</mi></mrow></msub></msub></math>). Verifying the existence of a nematic transition below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math> is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>Sb</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow></math> using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>E</mi><mrow><mn>2</mn><mi>g</mi></mrow></msub></msub></math> is temperature independent, except for a step jump at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>. The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>m</mi><msub><mi>A</mi><mrow><mn>1</mn><mi>g</mi></mrow></msub></msub></math> increases below <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mrow><mi>CDW</mi></mrow></msub></math>, reaching a peak value of 90 at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup><mo>=</mo><mn>20</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">K</mi></math>. Our results strongly indicate that the phase transition at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>T</mi><mo>*</mo></msup></math> is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>A</mi><mrow><mn>1</mn><mi>g</mi></mrow></msub></math> channel.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"48 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031015","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ever since the discovery of the charge density wave (CDW) transition in the kagome metal CsV3Sb5, the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature (TCDW), an additional electronic nematic instability well below TCDW has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel (mE2g). Verifying the existence of a nematic transition below TCDW is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of CsV3Sb5 using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient mE2g is temperature independent, except for a step jump at TCDW. The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient mA1g increases below TCDW, reaching a peak value of 90 at T*=20K. Our results strongly indicate that the phase transition at T* is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the A1g channel.

Abstract Image

卡戈米金属 CsV3Sb5 中不存在 E2g 向列不稳定性和占主导地位的 A1g 响应
自从在卡戈米金属 CsV3Sb5 中发现电荷密度波(CDW)转变以来,关于其对称性破缺的性质一直存在激烈的争论。虽然有证据表明旋转对称性在 CDW 转变温度(TCDW)下已经被打破,但根据各向异性通道中发散的弹性系数(mE2g),在 TCDW 以下还有一种额外的电子向列不稳定性。验证是否存在低于 TCDW 的向列转变不仅对建立 CDW 有序参数的正确描述至关重要,而且对理解低温超导性也很重要。在此,我们报告了使用三种不同技术探测各向同性和各向异性对称通道的 CsV3Sb5 的弹性电阻率测量结果。与之前的报告相反,我们发现各向异性弹性系数 mE2g 与温度无关,只是在 TCDW 时出现阶跃。对弹性热效应的测量进一步证实了不存在向列波动,测量结果表明没有与向列电感相关的增强。另一方面,对称弹性系数 mA1g 在低于 TCDW 时增大,在 T*=20 K 时达到 90 的峰值。我们的结果有力地表明,T* 时的相变本质上不是向列的,之前报告的弹性系数发散是由于来自 A1g 通道的污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信