Adipose-derived stem cells and ginkgo biloba extract-loaded PCL/gelatin nanofibrous scaffolds for peripheral nerve injury repair: the impact of physical activity.
{"title":"Adipose-derived stem cells and ginkgo biloba extract-loaded PCL/gelatin nanofibrous scaffolds for peripheral nerve injury repair: the impact of physical activity.","authors":"Hua Gong, Zhengtian Chen","doi":"10.37190/abb-02323-2023-06","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve damages take place as a result of trauma, compression or disease, resulting in sensory loss, impaired motor function and subsequent challenges. In the current study, ginkgo biloba extract was loaded into PCL/gelatin scaffolds through electrospinning method. The scaffolds were characterized <i>in vitro</i> using various studies. The prepared nanofibrous scaffolds were rolled up to make neural guidance channels. Then, the conduits were seeded with adipose-derived stem cells and transplanted into a rat model of sciatic nerve injury. The scaffolds were not toxic and had optimal tensile and suturability. The animals treated with the conduits that delivered adipose-derived stem cells and ginkgo biloba extract, and received the treadmill exercise, had significantly higher motor and sensory functions recovery. In addition, histopathological examinations showed beneficial role of the exercise plan on the nervous system repair.</p>","PeriodicalId":519996,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"25 4","pages":"35-47"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02323-2023-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve damages take place as a result of trauma, compression or disease, resulting in sensory loss, impaired motor function and subsequent challenges. In the current study, ginkgo biloba extract was loaded into PCL/gelatin scaffolds through electrospinning method. The scaffolds were characterized in vitro using various studies. The prepared nanofibrous scaffolds were rolled up to make neural guidance channels. Then, the conduits were seeded with adipose-derived stem cells and transplanted into a rat model of sciatic nerve injury. The scaffolds were not toxic and had optimal tensile and suturability. The animals treated with the conduits that delivered adipose-derived stem cells and ginkgo biloba extract, and received the treadmill exercise, had significantly higher motor and sensory functions recovery. In addition, histopathological examinations showed beneficial role of the exercise plan on the nervous system repair.