A novel drug prejudice scaffold-imidazopyridine-conjugate can promote cell death in a colorectal cancer model by binding to β-catenin and suppressing the Wnt signaling pathway.

Min Hee Yang, Basappa Basappa, Suresha N Deveshegowda, Akshay Ravish, Arunkumar Mohan, Omantheswara Nagaraja, Mahendra Madegowda, Kanchugarakoppal S Rangappa, Amudha Deivasigamani, Vijay Pandey, Peter E Lobie, Kam Man Hui, Gautam Sethi, Kwang Seok Ahn
{"title":"A novel drug prejudice scaffold-imidazopyridine-conjugate can promote cell death in a colorectal cancer model by binding to β-catenin and suppressing the Wnt signaling pathway.","authors":"Min Hee Yang, Basappa Basappa, Suresha N Deveshegowda, Akshay Ravish, Arunkumar Mohan, Omantheswara Nagaraja, Mahendra Madegowda, Kanchugarakoppal S Rangappa, Amudha Deivasigamani, Vijay Pandey, Peter E Lobie, Kam Man Hui, Gautam Sethi, Kwang Seok Ahn","doi":"10.1016/j.jare.2024.07.022","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Globally, colorectal cancer (CRC) is the third most common type of cancer, and its treatment frequently includes the utilization of drugs based on antibodies and small molecules. The development of CRC has been linked to various signaling pathways, with the Wnt/β-catenin pathway identified as a key target for intervention.</p><p><strong>Objectives: </strong>We have explored the impact of imidazopyridine-tethered chalcone-C (CHL-C) in CRC models.</p><p><strong>Methods: </strong>To determine the influence of CHL-C on apoptosis and autophagy, Western blot analysis, annexin V assay, cell cycle analysis, acridine orange staining, and immunocytochemistry were performed. Next, the activation of the Wnt/β-catenin signaling pathway and the anti-cancer effects of CHL-C in vivo were examined in an orthotopic HCT-116 mouse model.</p><p><strong>Results: </strong>We describe the synthesis and biological assessment of the CHL series as inhibitors of the viability of HCT-116, SW480, HT-29, HCT-15, and SNU-C2A CRC cell lines. Further biological evaluations showed that CHL-C induced apoptosis and autophagy in down-regulated β-catenin, Wnt3a, FZD-1, Axin-1, and p-GSK-3β (Ser9), and up-regulated p-GSK3β (Tyr216) and β-TrCP. In-depth analysis using structure-based bioinformatics showed that CHL-C strongly binds to β-catenin, with a binding affinity comparable to that of ICG-001, a well-known β-catenin inhibitor. Additionally, our in vivo research showed that CHL-C markedly inhibited tumor growth and triggered the activation of both apoptosis and autophagy in tumor tissues.</p><p><strong>Conclusion: </strong>CHL-C is capable of inducing apoptosis and autophagy by influencing the Wnt/β-catenin signaling pathway.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.07.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Globally, colorectal cancer (CRC) is the third most common type of cancer, and its treatment frequently includes the utilization of drugs based on antibodies and small molecules. The development of CRC has been linked to various signaling pathways, with the Wnt/β-catenin pathway identified as a key target for intervention.

Objectives: We have explored the impact of imidazopyridine-tethered chalcone-C (CHL-C) in CRC models.

Methods: To determine the influence of CHL-C on apoptosis and autophagy, Western blot analysis, annexin V assay, cell cycle analysis, acridine orange staining, and immunocytochemistry were performed. Next, the activation of the Wnt/β-catenin signaling pathway and the anti-cancer effects of CHL-C in vivo were examined in an orthotopic HCT-116 mouse model.

Results: We describe the synthesis and biological assessment of the CHL series as inhibitors of the viability of HCT-116, SW480, HT-29, HCT-15, and SNU-C2A CRC cell lines. Further biological evaluations showed that CHL-C induced apoptosis and autophagy in down-regulated β-catenin, Wnt3a, FZD-1, Axin-1, and p-GSK-3β (Ser9), and up-regulated p-GSK3β (Tyr216) and β-TrCP. In-depth analysis using structure-based bioinformatics showed that CHL-C strongly binds to β-catenin, with a binding affinity comparable to that of ICG-001, a well-known β-catenin inhibitor. Additionally, our in vivo research showed that CHL-C markedly inhibited tumor growth and triggered the activation of both apoptosis and autophagy in tumor tissues.

Conclusion: CHL-C is capable of inducing apoptosis and autophagy by influencing the Wnt/β-catenin signaling pathway.

一种新型药物偏见支架-咪唑吡啶-共轭物可通过与β-catenin结合并抑制Wnt信号通路,在结直肠癌模型中促进细胞死亡。
导言:在全球范围内,结直肠癌(CRC)是第三大常见癌症类型,其治疗通常包括使用基于抗体和小分子的药物。CRC 的发病与多种信号通路有关,其中 Wnt/β-catenin 通路被认为是一个关键的干预靶点:我们探索了咪唑吡啶拴系的查耳酮-C(CHL-C)在 CRC 模型中的影响:为了确定 CHL-C 对细胞凋亡和自噬的影响,我们进行了 Western 印迹分析、附件素 V 检测、细胞周期分析、吖啶橙染色和免疫细胞化学分析。接着,在正位 HCT-116 小鼠模型中研究了 CHL-C 对 Wnt/β-catenin 信号通路的激活和体内抗癌作用:结果:我们描述了 CHL 系列作为 HCT-116、SW480、HT-29、HCT-15 和 SNU-C2A CRC 细胞系活力抑制剂的合成和生物学评估。进一步的生物学评估表明,CHL-C能诱导细胞凋亡和自噬,下调β-catenin、Wnt3a、FZD-1、Axin-1和p-GSK-3β(Ser9),上调p-GSK3β(Tyr216)和β-TrCP。基于结构的生物信息学深入分析显示,CHL-C能与β-catenin强结合,其结合亲和力与著名的β-catenin抑制剂ICG-001相当。此外,我们的体内研究表明,CHL-C能显著抑制肿瘤生长,并引发肿瘤组织的凋亡和自噬:结论:CHL-C能够通过影响Wnt/β-catenin信号通路诱导细胞凋亡和自噬。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信