Nancy L Garcia, Mariana Rodrigues-Motta, Helio S Migon, Eva Petkova, Thaddeus Tarpey, R Todd Ogden, Julio O Giordano, Martin M Perez
{"title":"Unsupervised Bayesian classification for models with scalar and functional covariates.","authors":"Nancy L Garcia, Mariana Rodrigues-Motta, Helio S Migon, Eva Petkova, Thaddeus Tarpey, R Todd Ogden, Julio O Giordano, Martin M Perez","doi":"10.1093/jrsssc/qlae006","DOIUrl":null,"url":null,"abstract":"<p><p>We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"73 3","pages":"658-681"},"PeriodicalIF":1.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).
我们考虑通过一个潜在的多项式变量进行无监督分类,该变量将标量响应归类到包含标量和函数协变量的混合物模型的 L 个分量之一。这一过程可视为一个分层模型,第一层根据参数分布的混合物对标量响应进行建模,第二层通过包含功能和标量协变量的广义线性模型对混合物概率进行建模。将函数协变量视为向量的传统方法不仅存在维度诅咒,因为函数协变量的测量间隔可能非常小,导致模型高度参数化,而且没有考虑到数据的性质。我们使用基扩展来降低维度,并使用贝叶斯方法来估计参数,同时提供潜在分类向量的预测。该方法由两个现有方法不易处理的数据实例激发。第一个例子涉及识别临床试验中的安慰剂应答者(正态混合模型),另一个例子涉及预测挤奶奶牛的疾病(泊松模型的零膨胀混合)。
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.