{"title":"Results of the cyclic triaxial testing on mechanically-biologically treated waste.","authors":"Tuo Li, Zhenying Zhang, Youwen Zhang, Wenjie Chen","doi":"10.1177/0734242X241261964","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate assessment of the dynamic strength characteristics of mechanically-biologically treated (MBT) waste is crucial for the construction and safe operation of landfill sites. Herein, samples of MBT waste from the Hangzhou Tianziling landfill were collected and subjected to consolidated undrained cyclic triaxial tests under four confinement levels and six cyclic stress ratios (CSRs). Under cyclic loading, the MBT waste exhibited a critical CSR. If the CSR exceeds the critical value, the MBT waste specimen rapidly undergoes deformation and failure. Dynamic strength of MBT waste decreases with an increase in the number of cyclic vibrations and increases with an increase in confining pressure. Considering the influence of cyclic vibrations and confining pressure, a formula for dynamic strength in terms of cyclic vibrations and confining pressure has been established. The dynamic shear strength parameter ranges for MBT waste were obtained under different seismic magnitudes. We compared the dynamic and static shear strength parameters of MBT waste and municipal solid waste. These study findings can serve as a reference for the dynamic stability analysis of MBT waste landfills.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"775-786"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241261964","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate assessment of the dynamic strength characteristics of mechanically-biologically treated (MBT) waste is crucial for the construction and safe operation of landfill sites. Herein, samples of MBT waste from the Hangzhou Tianziling landfill were collected and subjected to consolidated undrained cyclic triaxial tests under four confinement levels and six cyclic stress ratios (CSRs). Under cyclic loading, the MBT waste exhibited a critical CSR. If the CSR exceeds the critical value, the MBT waste specimen rapidly undergoes deformation and failure. Dynamic strength of MBT waste decreases with an increase in the number of cyclic vibrations and increases with an increase in confining pressure. Considering the influence of cyclic vibrations and confining pressure, a formula for dynamic strength in terms of cyclic vibrations and confining pressure has been established. The dynamic shear strength parameter ranges for MBT waste were obtained under different seismic magnitudes. We compared the dynamic and static shear strength parameters of MBT waste and municipal solid waste. These study findings can serve as a reference for the dynamic stability analysis of MBT waste landfills.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.