Dynamic continualization of mechanical metamaterials with quasi-periodic microstructure.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rosaria Del Toro, Maria Laura De Bellis, Andrea Bacigalupo
{"title":"Dynamic continualization of mechanical metamaterials with quasi-periodic microstructure.","authors":"Rosaria Del Toro, Maria Laura De Bellis, Andrea Bacigalupo","doi":"10.1098/rsta.2023.0353","DOIUrl":null,"url":null,"abstract":"<p><p>This article focuses on characterizing a class of quasi-periodic metamaterials created through the repeated arrangement of an elementary cell in a fixed direction. The elementary cell consists of two building blocks made of elastic materials and arranged according to the generalized Fibonacci sequence, giving rise to a quasi-periodic finite microstructure, also called Fibonacci generation. By exploiting the transfer matrix method, the frequency band structure of selected periodic approximants associated with the Fibonacci superlattice, i.e. the layered quasi-periodic metamaterial, is determined. The self-similarity of the frequency band structure is analysed by means of the invariants of the symplectic transfer matrix as well as the transmission coefficients of the finite clusters of Fibonacci generations. A high-frequency continualization scheme is then proposed to identify integral-type or gradient-type non-local continua. The frequency band structures obtained from the continualization scheme are compared with those derived from the Floquet-Bloch theory to validate the proposed scheme. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1).'</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0353","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on characterizing a class of quasi-periodic metamaterials created through the repeated arrangement of an elementary cell in a fixed direction. The elementary cell consists of two building blocks made of elastic materials and arranged according to the generalized Fibonacci sequence, giving rise to a quasi-periodic finite microstructure, also called Fibonacci generation. By exploiting the transfer matrix method, the frequency band structure of selected periodic approximants associated with the Fibonacci superlattice, i.e. the layered quasi-periodic metamaterial, is determined. The self-similarity of the frequency band structure is analysed by means of the invariants of the symplectic transfer matrix as well as the transmission coefficients of the finite clusters of Fibonacci generations. A high-frequency continualization scheme is then proposed to identify integral-type or gradient-type non-local continua. The frequency band structures obtained from the continualization scheme are compared with those derived from the Floquet-Bloch theory to validate the proposed scheme. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1).'

具有准周期微结构的机械超材料的动态连续性。
这篇文章的重点是描述一类通过在固定方向上重复排列基本单元而产生的准周期超材料的特征。基本单元由弹性材料制成的两个构件组成,并按照广义斐波那契数列排列,从而产生准周期有限微结构,也称为斐波那契世代。通过利用传递矩阵法,确定了与斐波那契超阵(即层状准周期超材料)相关的选定周期近似值的频带结构。频带结构的自相似性是通过交映传递矩阵的不变量以及斐波那契世代有限簇的传输系数来分析的。然后提出了一种高频连续化方案,以识别积分型或梯度型非局部连续。将从连续化方案中获得的频带结构与从 Floquet-Bloch 理论中推导出的频带结构进行比较,以验证所提出的方案。本文是 "弹性和声学超材料科学的最新发展(第一部分)"主题期刊的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信