Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Evi M.C. Huijben , Maarten L. Terpstra , Arthur Jr. Galapon , Suraj Pai , Adrian Thummerer , Peter Koopmans , Manya Afonso , Maureen van Eijnatten , Oliver Gurney-Champion , Zeli Chen , Yiwen Zhang , Kaiyi Zheng , Chuanpu Li , Haowen Pang , Chuyang Ye , Runqi Wang , Tao Song , Fuxin Fan , Jingna Qiu , Yixing Huang , Matteo Maspero
{"title":"Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report","authors":"Evi M.C. Huijben ,&nbsp;Maarten L. Terpstra ,&nbsp;Arthur Jr. Galapon ,&nbsp;Suraj Pai ,&nbsp;Adrian Thummerer ,&nbsp;Peter Koopmans ,&nbsp;Manya Afonso ,&nbsp;Maureen van Eijnatten ,&nbsp;Oliver Gurney-Champion ,&nbsp;Zeli Chen ,&nbsp;Yiwen Zhang ,&nbsp;Kaiyi Zheng ,&nbsp;Chuanpu Li ,&nbsp;Haowen Pang ,&nbsp;Chuyang Ye ,&nbsp;Runqi Wang ,&nbsp;Tao Song ,&nbsp;Fuxin Fan ,&nbsp;Jingna Qiu ,&nbsp;Yixing Huang ,&nbsp;Matteo Maspero","doi":"10.1016/j.media.2024.103276","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning.</p><p>Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans.</p><p>The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (<span><math><mrow><mo>≥</mo><mn>0</mn><mo>.</mo><mn>87</mn><mo>/</mo><mn>0</mn><mo>.</mo><mn>90</mn></mrow></math></span>) and gamma pass rates for photon (<span><math><mrow><mo>≥</mo><mn>98</mn><mo>.</mo><mn>1</mn><mtext>%</mtext><mo>/</mo><mn>99</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>) and proton (<span><math><mrow><mo>≥</mo><mn>97</mn><mo>.</mo><mn>3</mn><mtext>%</mtext><mo>/</mo><mn>97</mn><mo>.</mo><mn>0</mn><mtext>%</mtext></mrow></math></span>) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT.</p><p>SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361841524002019/pdfft?md5=ac2a85a25668e619ece44f14ec077f0d&pid=1-s2.0-S1361841524002019-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning.

Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans.

The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (0.87/0.90) and gamma pass rates for photon (98.1%/99.0%) and proton (97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT.

SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.

生成用于放射治疗的合成计算机断层扫描:SynthRAD2023 挑战报告。
放射治疗在癌症治疗中起着至关重要的作用,需要在多天内将射线精确地照射到肿瘤上,同时保护健康组织。计算机断层扫描(CT)是治疗计划不可或缺的一部分,它提供的电子密度数据对精确计算剂量至关重要。然而,准确呈现患者的解剖结构具有挑战性,尤其是在适应性放疗中,因为 CT 并非每天都能获取。磁共振成像(MRI)可提供出色的软组织对比度。但它缺乏电子密度信息,而锥束 CT(CBCT)缺乏直接的电子密度校准,主要用于患者定位。采用纯磁共振成像或基于 CBCT 的自适应放疗无需进行 CT 规划,但也带来了挑战。合成 CT(sCT)生成技术旨在利用图像合成来弥补 MRI、CBCT 和 CT 之间的差距,从而应对这些挑战。SynthRAD2023 挑战赛旨在使用来自 1080 名患者的多中心地面实况数据比较合成 CT 生成方法,分为两个任务:(1)MRI-to-CT 和(2)CBCT-to-CT。评估包括质子和光子计划的图像相似性和基于剂量的指标。挑战赛吸引了众多参赛者,任务 1/2共有 617 人报名,22/17 人提交了有效报告。表现最好的团队达到了较高的结构相似性指数(≥0.87/0.90),光子(≥98.1%/99.0%)和质子(≥97.3%/97.0%)计划的伽马通过率也很高。然而,在图像相似度指标和剂量准确性之间没有发现明显的相关性,这强调了在评估 sCT 临床适用性时进行剂量评估的必要性。SynthRAD2023促进了sCT生成技术的研究和基准测试,为开发纯磁共振成像和基于CBCT的自适应放疗提供了启示。它展示了深度学习在生成高质量 sCT 方面日益增强的能力,从而减少了治疗规划对传统 CT 的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信