Jacob T Skigen, Corey A Koller, Luke Nigro, Darcy S Reisman, Zahra McKee, Shay R Pinhey, Adrienne Henderson, Jason M Wilken, Elisa S Arch
{"title":"Customized passive-dynamic ankle-foot orthoses can improve walking economy and speed for many individuals post-stroke.","authors":"Jacob T Skigen, Corey A Koller, Luke Nigro, Darcy S Reisman, Zahra McKee, Shay R Pinhey, Adrienne Henderson, Jason M Wilken, Elisa S Arch","doi":"10.1186/s12984-024-01425-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Passive-dynamic ankle-foot orthoses (PD-AFOs) are often prescribed to address plantar flexor weakness during gait, which is commonly observed after stroke. However, limited evidence is available to inform the prescription guidelines of PD-AFO bending stiffness. This study assessed the extent to which PD-AFOs customized to match an individual's level of plantar flexor weakness influence walking function, as compared to No AFO and their standard of care (SOC) AFO.</p><p><strong>Methods: </strong>Mechanical cost-of-transport, self-selected walking speed, and key biomechanical variables were measured while individuals greater than six months post-stroke walked with No AFO, with their SOC AFO, and with a stiffness-customized PD-AFO. Outcomes were compared across these conditions using a repeated measures ANOVA or Friedman test (depending on normality) for group-level analysis and simulation modeling analysis for individual-level analysis.</p><p><strong>Results: </strong>Twenty participants completed study activities. Mechanical cost-of-transport and self-selected walking speed improved with the stiffness-customized PD-AFOs compared to No AFO and SOC AFO. However, this did not result in a consistent improvement in other biomechanical variables toward typical values. In line with the heterogeneous nature of the post-stroke population, the response to the PD-AFO was highly variable.</p><p><strong>Conclusions: </strong>Stiffness-customized PD-AFOs can improve the mechanical cost-of-transport and self-selected walking speed in many individuals post-stroke, as compared to No AFO and participants' standard of care AFO. This work provides initial efficacy data for stiffness-customized PD-AFOs in individuals post-stroke and lays the foundation for future studies to enable consistently effective prescription of PD-AFOs for patients post-stroke in clinical practice.</p><p><strong>Trial registration: </strong>NCT04619043.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01425-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Passive-dynamic ankle-foot orthoses (PD-AFOs) are often prescribed to address plantar flexor weakness during gait, which is commonly observed after stroke. However, limited evidence is available to inform the prescription guidelines of PD-AFO bending stiffness. This study assessed the extent to which PD-AFOs customized to match an individual's level of plantar flexor weakness influence walking function, as compared to No AFO and their standard of care (SOC) AFO.
Methods: Mechanical cost-of-transport, self-selected walking speed, and key biomechanical variables were measured while individuals greater than six months post-stroke walked with No AFO, with their SOC AFO, and with a stiffness-customized PD-AFO. Outcomes were compared across these conditions using a repeated measures ANOVA or Friedman test (depending on normality) for group-level analysis and simulation modeling analysis for individual-level analysis.
Results: Twenty participants completed study activities. Mechanical cost-of-transport and self-selected walking speed improved with the stiffness-customized PD-AFOs compared to No AFO and SOC AFO. However, this did not result in a consistent improvement in other biomechanical variables toward typical values. In line with the heterogeneous nature of the post-stroke population, the response to the PD-AFO was highly variable.
Conclusions: Stiffness-customized PD-AFOs can improve the mechanical cost-of-transport and self-selected walking speed in many individuals post-stroke, as compared to No AFO and participants' standard of care AFO. This work provides initial efficacy data for stiffness-customized PD-AFOs in individuals post-stroke and lays the foundation for future studies to enable consistently effective prescription of PD-AFOs for patients post-stroke in clinical practice.
背景:被动动态踝足矫形器(PD-AFO)通常用于解决中风后常见的步态时足底屈肌无力的问题。然而,用于指导 PD-AFO 弯曲硬度处方的证据有限。本研究评估了根据个人跖屈肌无力程度定制的 PD-AFO 与无 AFO 及其标准护理 (SOC) AFO 相比对步行功能的影响程度:方法:在中风后六个月以上的患者使用无AFO、标准护理AFO和硬度定制的PD-AFO行走时,对他们的行走机械成本、自选行走速度和关键生物力学变量进行了测量。使用重复测量方差分析或弗里德曼检验(取决于正态性)对不同条件下的结果进行比较,以进行群体层面的分析,并使用模拟建模分析进行个体层面的分析:结果:20 名参与者完成了研究活动。与无 AFO 和 SOC AFO 相比,根据刚度定制的 PD-AFO 改善了机械运动成本和自选步行速度。然而,这并没有导致其他生物力学变量向典型值的一致改善。与中风后人群的异质性相一致的是,PD-AFO 的反应也存在很大差异:与无AFO和参与者的标准护理AFO相比,根据硬度定制的PD-AFO可以改善许多中风后患者的机械运输成本和自选步行速度。这项研究提供了针对中风后患者的僵硬度定制PD-AFO的初步疗效数据,为今后的研究奠定了基础,以便在临床实践中为中风后患者持续有效地开具PD-AFO处方:试验注册:NCT04619043。
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.