Epigenetic control of metabolic identity across cell types

Maria Pires Pacheco, Deborah Gerard, Riley J. Mangan, Alec R. Chapman, Dennis Hecker, Manolis Kellis, Marcel H. Schulz, Lasse Sinkkonen, Thomas Sauter
{"title":"Epigenetic control of metabolic identity across cell types","authors":"Maria Pires Pacheco, Deborah Gerard, Riley J. Mangan, Alec R. Chapman, Dennis Hecker, Manolis Kellis, Marcel H. Schulz, Lasse Sinkkonen, Thomas Sauter","doi":"10.1101/2024.07.24.604914","DOIUrl":null,"url":null,"abstract":"Constraint-based network modelling is a powerful tool for analysing cellular metabolism at genomic scale. Here, we conducted an integrative analysis of metabolic networks reconstructed from RNA-seq data with paired epigenomic data from the EpiATLAS resource of the International Human Epigenome Consortium (IHEC). Applying a state-of-the-art contextualisation algorithm, we reconstructed metabolic networks across 1,555 samples corresponding to 58 tissues and cell types. Analysis of these networks revealed the distribution of metabolic functionalities across human cell types and provides a compendium of human metabolic activity. This integrative approach allowed us to define, across tissues and cell types, i) reactions that fulfil the basic metabolic processes (core metabolism), and ii) cell type-specific functions (unique metabolism), that shape the metabolic identity of a cell or a tissue. Integration with EpiATLAS-derived cell type-specific gene-level chromatin states and enhancer-gene interactions identified enhancers, transcription factors, and key nodes controlling core and unique metabolism. Transport and first reactions of pathways were enriched for high expression, active chromatin state, and Polycomb-mediated repression in cell types where pathways are inactive, suggesting that key nodes are targets of repression. This integrative analysis forms the basis for identifying regulation points that control metabolic identity in human cells.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.24.604914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constraint-based network modelling is a powerful tool for analysing cellular metabolism at genomic scale. Here, we conducted an integrative analysis of metabolic networks reconstructed from RNA-seq data with paired epigenomic data from the EpiATLAS resource of the International Human Epigenome Consortium (IHEC). Applying a state-of-the-art contextualisation algorithm, we reconstructed metabolic networks across 1,555 samples corresponding to 58 tissues and cell types. Analysis of these networks revealed the distribution of metabolic functionalities across human cell types and provides a compendium of human metabolic activity. This integrative approach allowed us to define, across tissues and cell types, i) reactions that fulfil the basic metabolic processes (core metabolism), and ii) cell type-specific functions (unique metabolism), that shape the metabolic identity of a cell or a tissue. Integration with EpiATLAS-derived cell type-specific gene-level chromatin states and enhancer-gene interactions identified enhancers, transcription factors, and key nodes controlling core and unique metabolism. Transport and first reactions of pathways were enriched for high expression, active chromatin state, and Polycomb-mediated repression in cell types where pathways are inactive, suggesting that key nodes are targets of repression. This integrative analysis forms the basis for identifying regulation points that control metabolic identity in human cells.
跨细胞类型代谢特征的表观遗传控制
基于约束的网络建模是在基因组尺度上分析细胞代谢的有力工具。在这里,我们对从RNA-seq数据重建的代谢网络与国际人类表观基因组联盟(IHEC)的EpiATLAS资源中的成对表观基因组数据进行了综合分析。我们应用最先进的情境化算法,重建了1,555个样本的代谢网络,这些样本对应58种组织和细胞类型。对这些网络的分析揭示了新陈代谢功能在人类细胞类型中的分布,并提供了人类新陈代谢活动汇编。这种综合方法使我们能够在不同组织和细胞类型中定义 i) 实现基本代谢过程的反应(核心代谢),以及 ii) 细胞类型特有的功能(独特代谢),从而形成细胞或组织的代谢特征。与 EpiATLAS 导出的细胞类型特异性基因水平染色质状态和增强子-基因相互作用相结合,确定了控制核心代谢和独特代谢的增强子、转录因子和关键节点。在通路不活跃的细胞类型中,通路的运输和第一反应富含高表达、活跃的染色质状态和多聚酶介导的抑制,这表明关键节点是抑制的目标。这一综合分析为确定控制人类细胞代谢特性的调控点奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信