{"title":"Dark breathers on a snoidal wave background in the defocusing mKdV equation","authors":"Ana Mucalica, Dmitry E. Pelinovsky","doi":"10.1007/s11005-024-01844-6","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new exact solution to the defocusing modified Korteweg–de Vries equation to describe the interaction of a dark soliton and a traveling periodic wave. The solution (which we refer to as the dark breather) is obtained by using the Darboux transformation with the eigenfunctions of the Lax system expressed in terms of the Jacobi theta functions. Properties of elliptic functions including the quarter-period translations in the complex plane are applied to transform the solution to the simplest form. We explore the characteristic properties of these dark breathers and show that they propagate faster than the periodic wave (in the same direction) and attain maximal localization at a specific parameter value which is explicitly computed.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01844-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new exact solution to the defocusing modified Korteweg–de Vries equation to describe the interaction of a dark soliton and a traveling periodic wave. The solution (which we refer to as the dark breather) is obtained by using the Darboux transformation with the eigenfunctions of the Lax system expressed in terms of the Jacobi theta functions. Properties of elliptic functions including the quarter-period translations in the complex plane are applied to transform the solution to the simplest form. We explore the characteristic properties of these dark breathers and show that they propagate faster than the periodic wave (in the same direction) and attain maximal localization at a specific parameter value which is explicitly computed.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.