AF Embeddability of the C*-Algebra of a Deaconu-Renault Groupoid

Rafael Pereira Lima
{"title":"AF Embeddability of the C*-Algebra of a Deaconu-Renault Groupoid","authors":"Rafael Pereira Lima","doi":"arxiv-2407.16510","DOIUrl":null,"url":null,"abstract":"We study Deaconu-Renault groupoids corresponding to surjective local\nhomeomorphisms on locally compact, Hausdorff, second countable, totally\ndisconnected spaces, and we characterise when the C*-algebras of these\ngroupoids are AF embeddable. Our main result generalises theorems in the\nliterature for graphs and for crossed products of commutative C*-algebras by\nthe integers. We give a condition on the surjective local homeomorphism that\ncharacterises the AF embeddability of the C*-algebra of the associated\nDeaconu-Renault groupoid. In order to prove our main result, we analyse\nhomology groups for AF groupoids, and we prove a theorem that gives an explicit\nformula for the isomorphism of these groups and the corresponding K-theory.\nThis isomorphism generalises Farsi, Kumjian, Pask, Sims (M\\\"unster J. Math,\n2019) and Matui (Proc. Lond. Math. Soc, 2012), since we give an explicit\nformula for the isomorphism and we show that it preserves positive elements.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study Deaconu-Renault groupoids corresponding to surjective local homeomorphisms on locally compact, Hausdorff, second countable, totally disconnected spaces, and we characterise when the C*-algebras of these groupoids are AF embeddable. Our main result generalises theorems in the literature for graphs and for crossed products of commutative C*-algebras by the integers. We give a condition on the surjective local homeomorphism that characterises the AF embeddability of the C*-algebra of the associated Deaconu-Renault groupoid. In order to prove our main result, we analyse homology groups for AF groupoids, and we prove a theorem that gives an explicit formula for the isomorphism of these groups and the corresponding K-theory. This isomorphism generalises Farsi, Kumjian, Pask, Sims (M\"unster J. Math, 2019) and Matui (Proc. Lond. Math. Soc, 2012), since we give an explicit formula for the isomorphism and we show that it preserves positive elements.
Deaconu-Renault 群的 C* 代数的可嵌入性 AF
我们研究了与局部紧凑、豪斯多夫、第二可数、完全不相连空间上的投射局部同构相对应的 Deaconu-Renault 群组,并描述了当这些群组的 C* 算法是 AF 可嵌入时的特征。我们的主要结果概括了文献中关于图和整数交换 C* 对象的交叉积的定理。我们给出了一个条件,即描述关联的德卡努-雷诺群的 C* 代数的 AF 可嵌入性的射出局部同构。为了证明我们的主要结果,我们分析了AF群的同构群,并证明了一个定理,给出了这些群和相应K理论的同构的明确公式。这个同构概括了Farsi, Kumjian, Pask, Sims (M\"unster J. Math, 2019) 和Matui (Proc. Lond. Math. Soc, 2012),因为我们给出了同构的明确公式,并证明它保留了正元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信