A dilation theoretic approach to Banach spaces

Swapan Jana, Sourav Pal, Saikat Roy
{"title":"A dilation theoretic approach to Banach spaces","authors":"Swapan Jana, Sourav Pal, Saikat Roy","doi":"arxiv-2407.15112","DOIUrl":null,"url":null,"abstract":"For a complex Banach space $\\mathbb X$, we prove that $\\mathbb X$ is a\nHilbert space if and only if every strict contraction $T$ on $\\mathbb X$\ndilates to an isometry if and only if for every strict contraction $T$ on\n$\\mathbb X$ the function $A_T: \\mathbb X \\rightarrow [0, \\infty]$ defined by\n$A_T(x)=(\\|x\\|^2 -\\|Tx\\|^2)^{\\frac{1}{2}}$ gives a norm on $\\mathbb X$. We also\nfind several other necessary and sufficient conditions in this thread such that\na Banach sapce becomes a Hilbert space. We construct examples of strict\ncontractions on non-Hilbert Banach spaces that do not dilate to isometries.\nThen we characterize all strict contractions on a non-Hilbert Banach space that\ndilate to isometries and find explicit isometric dilation for them. We prove\nseveral other results including characterizations of complemented subspaces in\na Banach space, extension of a Wold isometry to a Banach space unitary and\ndescribing norm attainment sets of Banach space operators in terms of\ndilations.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a complex Banach space $\mathbb X$, we prove that $\mathbb X$ is a Hilbert space if and only if every strict contraction $T$ on $\mathbb X$ dilates to an isometry if and only if for every strict contraction $T$ on $\mathbb X$ the function $A_T: \mathbb X \rightarrow [0, \infty]$ defined by $A_T(x)=(\|x\|^2 -\|Tx\|^2)^{\frac{1}{2}}$ gives a norm on $\mathbb X$. We also find several other necessary and sufficient conditions in this thread such that a Banach sapce becomes a Hilbert space. We construct examples of strict contractions on non-Hilbert Banach spaces that do not dilate to isometries. Then we characterize all strict contractions on a non-Hilbert Banach space that dilate to isometries and find explicit isometric dilation for them. We prove several other results including characterizations of complemented subspaces in a Banach space, extension of a Wold isometry to a Banach space unitary and describing norm attainment sets of Banach space operators in terms of dilations.
巴拿赫空间的扩张理论方法
对于复巴纳赫空间 $\mathbb X$,我们证明,当且仅当 $\mathbb X$ 上的每一个严格收缩 $T$ 都能稀释为等势时,$\mathbb X$ 是一个希尔伯特空间,当且仅当 $\mathbb X$ 上的每一个严格收缩 $T$ 都能稀释为等势时,函数 $A_T:\由$A_T(x)=(\|x\|^2-\|Tx\|^2)^\{frac{1}{2}}$定义的函数$A_T: \rightarrow [0, \infty]$在$\mathbb X$上给出了一个规范。我们还发现了其他几个必要条件和充分条件,从而使巴拿赫空间成为希尔伯特空间。我们构建了非希尔伯特-巴拿赫空间上不扩张为等距的严格收缩的例子。然后,我们描述了非希尔伯特-巴拿赫空间上所有扩张为等距的严格收缩的特征,并为它们找到了明确的等距扩张。我们还证明了其他一些结果,包括巴拿赫空间互补子空间的特征、沃尔德等距扩展到巴拿赫空间单元以及用扩张描述巴拿赫空间算子的规范达到集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信