Research on multi-vehicle formation control based on improved artificial potential field method

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Zhang, Chao Wei, Yuanhao He
{"title":"Research on multi-vehicle formation control based on improved artificial potential field method","authors":"Hao Zhang, Chao Wei, Yuanhao He","doi":"10.1177/09544070241265392","DOIUrl":null,"url":null,"abstract":"Multi-vehicle formation can perform various special tasks in unstructured environment. How to take into account the safety of vehicles in avoiding obstacles and the ability to maintain formation has a certain research value. In this paper, the four-circle model of vehicle is established first, and the circle radius is adjusted according to the state of vehicle, so as to describe the safety boundary of vehicle. The improved RRT algorithm is used for the whole route planning, and the discrete path points are used as vehicle guidance. Then the artificial potential field is constructed, and the formation coordination potential field is proposed, so that the vehicles can cooperate with other vehicles to keep the preset formation as far as possible when avoiding obstacles. Then the control quantity of the vehicle is calculated according to the force condition of the vehicle in the potential field by the double exponential sliding mode control method. Finally, the effectiveness of the method is verified by the simulation experiments of triangle formation and circular formation under different working conditions, and the formation error is reduced by about 20%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265392","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-vehicle formation can perform various special tasks in unstructured environment. How to take into account the safety of vehicles in avoiding obstacles and the ability to maintain formation has a certain research value. In this paper, the four-circle model of vehicle is established first, and the circle radius is adjusted according to the state of vehicle, so as to describe the safety boundary of vehicle. The improved RRT algorithm is used for the whole route planning, and the discrete path points are used as vehicle guidance. Then the artificial potential field is constructed, and the formation coordination potential field is proposed, so that the vehicles can cooperate with other vehicles to keep the preset formation as far as possible when avoiding obstacles. Then the control quantity of the vehicle is calculated according to the force condition of the vehicle in the potential field by the double exponential sliding mode control method. Finally, the effectiveness of the method is verified by the simulation experiments of triangle formation and circular formation under different working conditions, and the formation error is reduced by about 20%.
基于改进人工势场方法的多车编队控制研究
多车编队可以在非结构化环境中执行各种特殊任务。如何兼顾车辆避障的安全性和保持队形的能力具有一定的研究价值。本文首先建立了车辆的四圆模型,并根据车辆状态调整圆半径,从而描述车辆的安全边界。采用改进的 RRT 算法进行全程路径规划,以离散路径点作为车辆制导。然后构建人工势场,提出队形协调势场,使车辆在避障时能与其他车辆合作,尽量保持预设队形。然后根据车辆在势场中的受力情况,通过双指数滑模控制方法计算出车辆的控制量。最后,通过不同工况下三角形编队和圆形编队的仿真实验验证了该方法的有效性,编队误差减少了约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信