Reflection and Transmission of Airy Pulse from Controllable Periodic Temporal Boundary

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Deependra Singh Gaur, Akhilesh Kumar Mishra
{"title":"Reflection and Transmission of Airy Pulse from Controllable Periodic Temporal Boundary","authors":"Deependra Singh Gaur,&nbsp;Akhilesh Kumar Mishra","doi":"10.1002/andp.202400141","DOIUrl":null,"url":null,"abstract":"<p>The interaction between two Airy pulses propagating at different wavelengths is numerically investigated. The periodically varying peak intensity of the soliton that emerges from stronger Airy pulse (pump pulse) leads to the formation of periodic temporal boundary. The relatively weaker Airy pulse (probe pulse) on interaction with this boundary gets partially reflected as well as transmitted. As a result, the probe pulse spectrum splits into two parts- the reflected pulse spectrum undergoes redshift while transmitted pulse exhibits blueshift. The probe pulse witnesses maximum reflection when point of interaction lies on the intensity maxima of the emergent soliton from pump Airy pulse. On the other hand, maximum transmission occurs when probe Airy pulse interacts at the intensity minima of the soliton. The reflection and transmission processes can be manipulated by tuning the time delay between pump and probe Airy pulses. In the case of a sufficiently intense pump pulse, the temporal boundary mimics the artificial optical event horizon, and the weak probe Airy pulse is completely reflected. This phenomenon is equivalent to the temporal version of total internal reflection. The results of the study hold potential applications in optical manipulation and temporal waveguiding.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400141","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between two Airy pulses propagating at different wavelengths is numerically investigated. The periodically varying peak intensity of the soliton that emerges from stronger Airy pulse (pump pulse) leads to the formation of periodic temporal boundary. The relatively weaker Airy pulse (probe pulse) on interaction with this boundary gets partially reflected as well as transmitted. As a result, the probe pulse spectrum splits into two parts- the reflected pulse spectrum undergoes redshift while transmitted pulse exhibits blueshift. The probe pulse witnesses maximum reflection when point of interaction lies on the intensity maxima of the emergent soliton from pump Airy pulse. On the other hand, maximum transmission occurs when probe Airy pulse interacts at the intensity minima of the soliton. The reflection and transmission processes can be manipulated by tuning the time delay between pump and probe Airy pulses. In the case of a sufficiently intense pump pulse, the temporal boundary mimics the artificial optical event horizon, and the weak probe Airy pulse is completely reflected. This phenomenon is equivalent to the temporal version of total internal reflection. The results of the study hold potential applications in optical manipulation and temporal waveguiding.

Abstract Image

Abstract Image

可控周期时界的空气脉冲反射和传输
对两个以不同波长传播的艾里脉冲之间的相互作用进行了数值研究。较强的 Airy 脉冲(泵浦脉冲)产生的孤子峰值强度周期性变化,导致形成周期性的时间边界。相对较弱的 Airy 脉冲(探测脉冲)在与该边界相互作用时,会发生部分反射和传输。因此,探测脉冲频谱被分成两部分--反射脉冲频谱发生红移,而传输脉冲则表现为蓝移。当相互作用点位于泵浦艾里脉冲产生的孤子的强度最大值上时,探测脉冲会发生最大反射。另一方面,当探针艾里脉冲在孤子的强度最小值处发生相互作用时,会出现最大透射。反射和透射过程可以通过调整泵浦脉冲和探针艾里脉冲之间的时间延迟来控制。在泵浦脉冲强度足够大的情况下,时间边界模拟人工光学事件视界,微弱的探针艾里脉冲会被完全反射。这种现象相当于全内反射的时间版本。研究结果有望应用于光学操纵和时空波导领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信